Starting with Stock BTT-Config and Old Configs as Backup
This commit is contained in:
482
Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp
Normal file
482
Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp
Normal file
@@ -0,0 +1,482 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#include "../../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
#include "../bedlevel.h"
|
||||
#include "../../../module/planner.h"
|
||||
#include "../../../module/stepper.h"
|
||||
#include "../../../module/motion.h"
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
#include "../../../module/delta.h"
|
||||
#endif
|
||||
|
||||
#include "../../../MarlinCore.h"
|
||||
#include <math.h>
|
||||
|
||||
#if !UBL_SEGMENTED
|
||||
|
||||
void unified_bed_leveling::line_to_destination_cartesian(const_feedRate_t scaled_fr_mm_s, const uint8_t extruder) {
|
||||
/**
|
||||
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||
* as possible to determine if this is the case. If this move is within the same cell, we will
|
||||
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
||||
*/
|
||||
#if HAS_POSITION_MODIFIERS
|
||||
xyze_pos_t start = current_position, end = destination;
|
||||
planner.apply_modifiers(start);
|
||||
planner.apply_modifiers(end);
|
||||
#else
|
||||
const xyze_pos_t &start = current_position, &end = destination;
|
||||
#endif
|
||||
|
||||
const xy_int8_t istart = cell_indexes(start), iend = cell_indexes(end);
|
||||
|
||||
// A move within the same cell needs no splitting
|
||||
if (istart == iend) {
|
||||
|
||||
FINAL_MOVE:
|
||||
|
||||
// When UBL_Z_RAISE_WHEN_OFF_MESH is disabled Z correction is extrapolated from the edge of the mesh
|
||||
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH
|
||||
// For a move off the UBL mesh, use a constant Z raise
|
||||
if (!cell_index_x_valid(end.x) || !cell_index_y_valid(end.y)) {
|
||||
|
||||
// Note: There is no Z Correction in this case. We are off the mesh and don't know what
|
||||
// a reasonable correction would be, UBL_Z_RAISE_WHEN_OFF_MESH will be used instead of
|
||||
// a calculated (Bi-Linear interpolation) correction.
|
||||
|
||||
end.z += UBL_Z_RAISE_WHEN_OFF_MESH;
|
||||
planner.buffer_segment(end, scaled_fr_mm_s, extruder);
|
||||
current_position = destination;
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
// The distance is always MESH_X_DIST so multiply by the constant reciprocal.
|
||||
const float xratio = (end.x - mesh_index_to_xpos(iend.x)) * RECIPROCAL(MESH_X_DIST),
|
||||
yratio = (end.y - mesh_index_to_ypos(iend.y)) * RECIPROCAL(MESH_Y_DIST),
|
||||
z1 = z_values[iend.x][iend.y ] + xratio * (z_values[iend.x + 1][iend.y ] - z_values[iend.x][iend.y ]),
|
||||
z2 = z_values[iend.x][iend.y + 1] + xratio * (z_values[iend.x + 1][iend.y + 1] - z_values[iend.x][iend.y + 1]);
|
||||
|
||||
// X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.
|
||||
const float z0 = (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (!isnan(z0)) end.z += z0;
|
||||
planner.buffer_segment(end, scaled_fr_mm_s, extruder);
|
||||
current_position = destination;
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Past this point the move is known to cross one or more mesh lines. Check for the most common
|
||||
* case - crossing only one X or Y line - after details are worked out to reduce computation.
|
||||
*/
|
||||
|
||||
const xy_float_t dist = end - start;
|
||||
const xy_bool_t neg { dist.x < 0, dist.y < 0 };
|
||||
const xy_int8_t ineg { int8_t(neg.x), int8_t(neg.y) };
|
||||
const xy_float_t sign { neg.x ? -1.0f : 1.0f, neg.y ? -1.0f : 1.0f };
|
||||
const xy_int8_t iadd { int8_t(iend.x == istart.x ? 0 : sign.x), int8_t(iend.y == istart.y ? 0 : sign.y) };
|
||||
|
||||
/**
|
||||
* Compute the extruder scaling factor for each partial move, checking for
|
||||
* zero-length moves that would result in an infinite scaling factor.
|
||||
* A float divide is required for this, but then it just multiplies.
|
||||
* Also select a scaling factor based on the larger of the X and Y
|
||||
* components. The larger of the two is used to preserve precision.
|
||||
*/
|
||||
|
||||
const xy_float_t ad = sign * dist;
|
||||
const bool use_x_dist = ad.x > ad.y;
|
||||
|
||||
float on_axis_distance = use_x_dist ? dist.x : dist.y;
|
||||
|
||||
const float z_normalized_dist = (end.z - start.z) / on_axis_distance; // Allow divide by zero
|
||||
#if HAS_EXTRUDERS
|
||||
const float e_normalized_dist = (end.e - start.e) / on_axis_distance;
|
||||
const bool inf_normalized_flag = isinf(e_normalized_dist);
|
||||
#endif
|
||||
|
||||
xy_int8_t icell = istart;
|
||||
|
||||
const float ratio = dist.y / dist.x, // Allow divide by zero
|
||||
c = start.y - ratio * start.x;
|
||||
|
||||
const bool inf_ratio_flag = isinf(ratio);
|
||||
|
||||
xyze_pos_t dest; // Stores XYZE for segmented moves
|
||||
|
||||
/**
|
||||
* Handle vertical lines that stay within one column.
|
||||
* These need not be perfectly vertical.
|
||||
*/
|
||||
if (iadd.x == 0) { // Vertical line?
|
||||
icell.y += ineg.y; // Line going down? Just go to the bottom.
|
||||
while (icell.y != iend.y + ineg.y) {
|
||||
icell.y += iadd.y;
|
||||
const float next_mesh_line_y = mesh_index_to_ypos(icell.y);
|
||||
|
||||
/**
|
||||
* Skip the calculations for an infinite slope.
|
||||
* For others the next X is the same so this can continue.
|
||||
* Calculate X at the next Y mesh line.
|
||||
*/
|
||||
dest.x = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
|
||||
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(dest.x, icell.x, icell.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
dest.y = mesh_index_to_ypos(icell.y);
|
||||
|
||||
/**
|
||||
* Without this check, it's possible to generate a zero length move, as in the case where
|
||||
* the line is heading down, starting exactly on a mesh line boundary. Since this is rare
|
||||
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
||||
*/
|
||||
if (dest.y != start.y) {
|
||||
if (!inf_normalized_flag) { // fall-through faster than branch
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
dest.z += z0;
|
||||
planner.buffer_segment(dest, scaled_fr_mm_s, extruder);
|
||||
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
// At the final destination? Usually not, but when on a Y Mesh Line it's completed.
|
||||
if (xy_pos_t(current_position) != xy_pos_t(end))
|
||||
goto FINAL_MOVE;
|
||||
|
||||
current_position = destination;
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle horizontal lines that stay within one row.
|
||||
* These need not be perfectly horizontal.
|
||||
*/
|
||||
if (iadd.y == 0) { // Horizontal line?
|
||||
icell.x += ineg.x; // Heading left? Just go to the left edge of the cell for the first move.
|
||||
|
||||
while (icell.x != iend.x + ineg.x) {
|
||||
icell.x += iadd.x;
|
||||
dest.x = mesh_index_to_xpos(icell.x);
|
||||
dest.y = ratio * dest.x + c; // Calculate Y at the next X mesh line
|
||||
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(dest.y, icell.x, icell.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
/**
|
||||
* Without this check, it's possible to generate a zero length move, as in the case where
|
||||
* the line is heading left, starting exactly on a mesh line boundary. Since this is rare
|
||||
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
||||
*/
|
||||
if (dest.x != start.x) {
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist); // Based on X or Y because the move is horizontal
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
if (xy_pos_t(current_position) != xy_pos_t(end))
|
||||
goto FINAL_MOVE;
|
||||
|
||||
current_position = destination;
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Generic case of a line crossing both X and Y Mesh lines.
|
||||
*/
|
||||
|
||||
xy_int8_t cnt = (istart - iend).ABS();
|
||||
|
||||
icell += ineg;
|
||||
|
||||
while (cnt) {
|
||||
|
||||
const float next_mesh_line_x = mesh_index_to_xpos(icell.x + iadd.x),
|
||||
next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y);
|
||||
|
||||
dest.y = ratio * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
||||
dest.x = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
|
||||
// (No need to worry about ratio == 0.
|
||||
// In that case, it was already detected
|
||||
// as a vertical line move above.)
|
||||
|
||||
if (neg.x == (dest.x > next_mesh_line_x)) { // Check if we hit the Y line first
|
||||
// Yes! Crossing a Y Mesh Line next
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(dest.x, icell.x - ineg.x, icell.y + iadd.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
dest.y = next_mesh_line_y;
|
||||
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
icell.y += iadd.y;
|
||||
cnt.y--;
|
||||
}
|
||||
else {
|
||||
// Yes! Crossing a X Mesh Line next
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(dest.y, icell.x + iadd.x, icell.y - ineg.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
dest.x = next_mesh_line_x;
|
||||
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
icell.x += iadd.x;
|
||||
cnt.x--;
|
||||
}
|
||||
|
||||
if (cnt.x < 0 || cnt.y < 0) break; // Too far! Exit the loop and go to FINAL_MOVE
|
||||
}
|
||||
|
||||
if (xy_pos_t(current_position) != xy_pos_t(end))
|
||||
goto FINAL_MOVE;
|
||||
|
||||
current_position = destination;
|
||||
}
|
||||
|
||||
#else // UBL_SEGMENTED
|
||||
|
||||
#if IS_SCARA
|
||||
#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
|
||||
#elif ENABLED(DELTA)
|
||||
#define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
|
||||
#else // CARTESIAN
|
||||
#ifdef LEVELED_SEGMENT_LENGTH
|
||||
#define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
|
||||
#else
|
||||
#define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
||||
* This calls planner.buffer_segment multiple times for small incremental moves.
|
||||
* Returns true if did NOT move, false if moved (requires current_position update).
|
||||
*/
|
||||
|
||||
bool _O2 unified_bed_leveling::line_to_destination_segmented(const_feedRate_t scaled_fr_mm_s) {
|
||||
|
||||
if (!position_is_reachable(destination)) // fail if moving outside reachable boundary
|
||||
return true; // did not move, so current_position still accurate
|
||||
|
||||
const xyze_pos_t total = destination - current_position;
|
||||
|
||||
const float cart_xy_mm_2 = HYPOT2(total.x, total.y),
|
||||
cart_xy_mm = SQRT(cart_xy_mm_2); // Total XY distance
|
||||
|
||||
#if IS_KINEMATIC
|
||||
const float seconds = cart_xy_mm / scaled_fr_mm_s; // Duration of XY move at requested rate
|
||||
uint16_t segments = LROUND(segments_per_second * seconds), // Preferred number of segments for distance @ feedrate
|
||||
seglimit = LROUND(cart_xy_mm * RECIPROCAL(DELTA_SEGMENT_MIN_LENGTH)); // Number of segments at minimum segment length
|
||||
NOMORE(segments, seglimit); // Limit to minimum segment length (fewer segments)
|
||||
#else
|
||||
uint16_t segments = LROUND(cart_xy_mm * RECIPROCAL(DELTA_SEGMENT_MIN_LENGTH)); // Cartesian fixed segment length
|
||||
#endif
|
||||
|
||||
NOLESS(segments, 1U); // Must have at least one segment
|
||||
const float inv_segments = 1.0f / segments, // Reciprocal to save calculation
|
||||
segment_xyz_mm = SQRT(cart_xy_mm_2 + sq(total.z)) * inv_segments; // Length of each segment
|
||||
|
||||
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
||||
const float inv_duration = scaled_fr_mm_s / segment_xyz_mm;
|
||||
#endif
|
||||
|
||||
xyze_float_t diff = total * inv_segments;
|
||||
|
||||
// Note that E segment distance could vary slightly as z mesh height
|
||||
// changes for each segment, but small enough to ignore.
|
||||
|
||||
xyze_pos_t raw = current_position;
|
||||
|
||||
// Just do plain segmentation if UBL is inactive or the target is above the fade height
|
||||
if (!planner.leveling_active || !planner.leveling_active_at_z(destination.z)) {
|
||||
while (--segments) {
|
||||
raw += diff;
|
||||
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
||||
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
|
||||
);
|
||||
}
|
||||
planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
||||
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
|
||||
);
|
||||
return false; // Did not set current from destination
|
||||
}
|
||||
|
||||
// Otherwise perform per-segment leveling
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(destination.z);
|
||||
#endif
|
||||
|
||||
// Move to first segment destination
|
||||
raw += diff;
|
||||
|
||||
for (;;) { // for each mesh cell encountered during the move
|
||||
|
||||
// Compute mesh cell invariants that remain constant for all segments within cell.
|
||||
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
||||
// the bilinear interpolation from the adjacent cell within the mesh will still work.
|
||||
// Inner loop will exit each time (because out of cell bounds) but will come back
|
||||
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
||||
// for mesh inset area.
|
||||
|
||||
xy_int8_t icell = {
|
||||
int8_t((raw.x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST)),
|
||||
int8_t((raw.y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST))
|
||||
};
|
||||
LIMIT(icell.x, 0, GRID_MAX_CELLS_X);
|
||||
LIMIT(icell.y, 0, GRID_MAX_CELLS_Y);
|
||||
|
||||
float z_x0y0 = z_values[icell.x ][icell.y ], // z at lower left corner
|
||||
z_x1y0 = z_values[icell.x+1][icell.y ], // z at upper left corner
|
||||
z_x0y1 = z_values[icell.x ][icell.y+1], // z at lower right corner
|
||||
z_x1y1 = z_values[icell.x+1][icell.y+1]; // z at upper right corner
|
||||
|
||||
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
|
||||
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
||||
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
||||
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
||||
|
||||
const xy_pos_t pos = { mesh_index_to_xpos(icell.x), mesh_index_to_ypos(icell.y) };
|
||||
xy_pos_t cell = raw - pos;
|
||||
|
||||
const float z_xmy0 = (z_x1y0 - z_x0y0) * RECIPROCAL(MESH_X_DIST), // z slope per x along y0 (lower left to lower right)
|
||||
z_xmy1 = (z_x1y1 - z_x0y1) * RECIPROCAL(MESH_X_DIST); // z slope per x along y1 (upper left to upper right)
|
||||
|
||||
float z_cxy0 = z_x0y0 + z_xmy0 * cell.x; // z height along y0 at cell.x (changes for each cell.x in cell)
|
||||
|
||||
const float z_cxy1 = z_x0y1 + z_xmy1 * cell.x, // z height along y1 at cell.x
|
||||
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cell.x from y0 to y1
|
||||
|
||||
float z_cxym = z_cxyd * RECIPROCAL(MESH_Y_DIST); // z slope per y along cell.x from pos.y to y1 (changes for each cell.x in cell)
|
||||
|
||||
// float z_cxcy = z_cxy0 + z_cxym * cell.y; // interpolated mesh z height along cell.x at cell.y (do inside the segment loop)
|
||||
|
||||
// As subsequent segments step through this cell, the z_cxy0 intercept will change
|
||||
// and the z_cxym slope will change, both as a function of cell.x within the cell, and
|
||||
// each change by a constant for fixed segment lengths.
|
||||
|
||||
const float z_sxy0 = z_xmy0 * diff.x, // per-segment adjustment to z_cxy0
|
||||
z_sxym = (z_xmy1 - z_xmy0) * RECIPROCAL(MESH_Y_DIST) * diff.x; // per-segment adjustment to z_cxym
|
||||
|
||||
for (;;) { // for all segments within this mesh cell
|
||||
|
||||
if (--segments == 0) raw = destination; // if this is last segment, use destination for exact
|
||||
|
||||
const float z_cxcy = (z_cxy0 + z_cxym * cell.y) // interpolated mesh z height along cell.x at cell.y
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
* fade_scaling_factor // apply fade factor to interpolated mesh height
|
||||
#endif
|
||||
;
|
||||
|
||||
const float oldz = raw.z; raw.z += z_cxcy;
|
||||
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration) );
|
||||
raw.z = oldz;
|
||||
|
||||
if (segments == 0) // done with last segment
|
||||
return false; // didn't set current from destination
|
||||
|
||||
raw += diff;
|
||||
cell += diff;
|
||||
|
||||
if (!WITHIN(cell.x, 0, MESH_X_DIST) || !WITHIN(cell.y, 0, MESH_Y_DIST)) // done within this cell, break to next
|
||||
break;
|
||||
|
||||
// Next segment still within same mesh cell, adjust the per-segment
|
||||
// slope and intercept to compute next z height.
|
||||
|
||||
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
||||
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
||||
|
||||
} // segment loop
|
||||
} // cell loop
|
||||
|
||||
return false; // caller will update current_position
|
||||
}
|
||||
|
||||
#endif // UBL_SEGMENTED
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
Reference in New Issue
Block a user