Starting with Stock BTT-Config and Old Configs as Backup

This commit is contained in:
pat
2021-09-18 04:43:19 +02:00
commit 96877e3d8a
2375 changed files with 1526701 additions and 0 deletions

View File

@@ -0,0 +1,877 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* G26 Mesh Validation Tool
*
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively).
*
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed.
*
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
*
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
* as the base for any distance comparison.
*
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behavior and disables the Unified Bed Leveling System even if
* it is on.
*
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
*
* I # Preset Heat the Nozzle and Bed based on a Material Preset (if material presets are defined).
*
* F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed.
*
* K Keep-On Keep the heaters turned on at the end of the command.
*
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
*
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'circle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
*
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state. If you do not have
* an LCD, you must specify a value if you use P.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
*
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
* This works the same way that the UBL G29 P4 R parameter works.
*
* NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
* aware that there's some risk associated with printing without the ability to abort in
* cases where mesh point Z value may be inaccurate. As above, if you do not include a
* parameter, every point will be printed.
*
* S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
*
* U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* un-drawn circle is still done. But the distance to the location for each circle has a
* random number of the specified size added to it. Specifying S50 will give an interesting
* deviation from the normal behavior on a 10 x 10 Mesh.
*
* X # X Coord. Specify the starting location of the drawing activity.
*
* Y # Y Coord. Specify the starting location of the drawing activity.
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(G26_MESH_VALIDATION)
#define G26_OK false
#define G26_ERR true
#include "../../gcode/gcode.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../MarlinCore.h"
#include "../../module/planner.h"
#include "../../module/stepper.h"
#include "../../module/motion.h"
#include "../../module/tool_change.h"
#include "../../module/temperature.h"
#include "../../lcd/marlinui.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../lcd/extui/ui_api.h"
#endif
#if ENABLED(UBL_HILBERT_CURVE)
#include "../../feature/bedlevel/hilbert_curve.h"
#endif
#define EXTRUSION_MULTIPLIER 1.0
#define PRIME_LENGTH 10.0
#define OOZE_AMOUNT 0.3
#define INTERSECTION_CIRCLE_RADIUS 5
#define CROSSHAIRS_SIZE 3
#ifndef G26_RETRACT_MULTIPLIER
#define G26_RETRACT_MULTIPLIER 1.0 // x 1mm
#endif
#ifndef G26_XY_FEEDRATE
#define G26_XY_FEEDRATE (PLANNER_XY_FEEDRATE() / 3.0)
#endif
#ifndef G26_XY_FEEDRATE_TRAVEL
#define G26_XY_FEEDRATE_TRAVEL (PLANNER_XY_FEEDRATE() / 1.5)
#endif
#if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
#error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
#endif
#define G26_OK false
#define G26_ERR true
#if ENABLED(ARC_SUPPORT)
void plan_arc(const xyze_pos_t&, const ab_float_t&, const bool, const uint8_t);
#endif
constexpr float g26_e_axis_feedrate = 0.025;
static MeshFlags circle_flags;
float g26_random_deviation = 0.0;
#if HAS_LCD_MENU
/**
* If the LCD is clicked, cancel, wait for release, return true
*/
bool user_canceled() {
if (!ui.button_pressed()) return false; // Return if the button isn't pressed
ui.set_status_P(GET_TEXT(MSG_G26_CANCELED), 99);
TERN_(HAS_LCD_MENU, ui.quick_feedback());
ui.wait_for_release();
return true;
}
#endif
void move_to(const_float_t rx, const_float_t ry, const_float_t z, const_float_t e_delta) {
static float last_z = -999.99;
const xy_pos_t dest = { rx, ry };
const bool has_xy_component = dest != current_position, // Check if X or Y is involved in the movement.
has_e_component = e_delta != 0.0;
if (z != last_z) {
last_z = z;
destination.set(current_position.x, current_position.y, z, current_position.e);
const feedRate_t fr_mm_s = planner.settings.max_feedrate_mm_s[Z_AXIS] * 0.5f; // Use half of the Z_AXIS max feed rate
prepare_internal_move_to_destination(fr_mm_s);
}
// If X or Y in combination with E is involved do a 'normal' move.
// If X or Y with no E is involved do a 'fast' move
// Otherwise retract/recover/hop.
destination = dest;
destination.e += e_delta;
const feedRate_t fr_mm_s = has_xy_component
? (has_e_component ? feedRate_t(G26_XY_FEEDRATE) : feedRate_t(G26_XY_FEEDRATE_TRAVEL))
: planner.settings.max_feedrate_mm_s[E_AXIS] * 0.666f;
prepare_internal_move_to_destination(fr_mm_s);
}
void move_to(const xyz_pos_t &where, const_float_t de) { move_to(where.x, where.y, where.z, de); }
typedef struct {
float extrusion_multiplier = EXTRUSION_MULTIPLIER,
retraction_multiplier = G26_RETRACT_MULTIPLIER,
layer_height = MESH_TEST_LAYER_HEIGHT,
prime_length = PRIME_LENGTH;
celsius_t bed_temp = MESH_TEST_BED_TEMP,
hotend_temp = MESH_TEST_HOTEND_TEMP;
float nozzle = MESH_TEST_NOZZLE_SIZE,
filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
ooze_amount; // 'O' ... OOZE_AMOUNT
bool continue_with_closest, // 'C'
keep_heaters_on; // 'K'
xy_pos_t xy_pos; // = { 0, 0 }
int8_t prime_flag = 0;
bool g26_retracted = false; // Track the retracted state during G26 so mismatched
// retracts/recovers don't result in a bad state.
void retract_filament(const xyz_pos_t &where) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
move_to(where, -1.0f * retraction_multiplier);
}
}
// TODO: Parameterize the Z lift with a define
void retract_lift_move(const xyz_pos_t &s) {
retract_filament(destination);
move_to(current_position.x, current_position.y, current_position.z + 0.5f, 0.0f); // Z lift to minimize scraping
move_to(s.x, s.y, s.z + 0.5f, 0.0f); // Get to the starting point with no extrusion while lifted
}
void recover_filament(const xyz_pos_t &where) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where, 1.2f * retraction_multiplier);
g26_retracted = false;
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there(const xyz_pos_t &s, const xyz_pos_t &e) {
// Distances to the start / end of the line
xy_float_t svec = current_position - s, evec = current_position - e;
const float dist_start = HYPOT2(svec.x, svec.y),
dist_end = HYPOT2(evec.x, evec.y),
line_length = HYPOT(e.x - s.x, e.y - s.y);
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
return print_line_from_here_to_there(e, s);
// Decide whether to retract & lift
if (dist_start > 2.0) retract_lift_move(s);
move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
recover_filament(destination);
move_to(e, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
void connect_neighbor_with_line(const xy_int8_t &p1, int8_t dx, int8_t dy) {
xy_int8_t p2;
p2.x = p1.x + dx;
p2.y = p1.y + dy;
if (p2.x < 0 || p2.x >= (GRID_MAX_POINTS_X)) return;
if (p2.y < 0 || p2.y >= (GRID_MAX_POINTS_Y)) return;
if (circle_flags.marked(p1.x, p1.y) && circle_flags.marked(p2.x, p2.y)) {
xyz_pos_t s, e;
s.x = _GET_MESH_X(p1.x) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dx;
e.x = _GET_MESH_X(p2.x) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dx;
s.y = _GET_MESH_Y(p1.y) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dy;
e.y = _GET_MESH_Y(p2.y) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dy;
s.z = e.z = layer_height;
#if HAS_ENDSTOPS
LIMIT(s.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
LIMIT(e.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
LIMIT(s.x, X_MIN_POS + 1, X_MAX_POS - 1);
LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
#endif
if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
print_line_from_here_to_there(s, e);
}
}
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool turn_on_heaters() {
SERIAL_ECHOLNPGM("Waiting for heatup.");
#if HAS_HEATED_BED
if (bed_temp > 25) {
#if HAS_WIRED_LCD
ui.set_status_P(GET_TEXT(MSG_G26_HEATING_BED), 99);
ui.quick_feedback();
TERN_(HAS_LCD_MENU, ui.capture());
#endif
thermalManager.setTargetBed(bed_temp);
// Wait for the temperature to stabilize
if (!thermalManager.wait_for_bed(true OPTARG(G26_CLICK_CAN_CANCEL, true)))
return G26_ERR;
}
#else
UNUSED(bed_temp);
#endif // HAS_HEATED_BED
// Start heating the active nozzle
#if HAS_WIRED_LCD
ui.set_status_P(GET_TEXT(MSG_G26_HEATING_NOZZLE), 99);
ui.quick_feedback();
#endif
thermalManager.setTargetHotend(hotend_temp, active_extruder);
// Wait for the temperature to stabilize
if (!thermalManager.wait_for_hotend(active_extruder, true OPTARG(G26_CLICK_CAN_CANCEL, true)))
return G26_ERR;
#if HAS_WIRED_LCD
ui.reset_status();
ui.quick_feedback();
#endif
return G26_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool prime_nozzle() {
const feedRate_t fr_slow_e = planner.settings.max_feedrate_mm_s[E_AXIS] / 15.0f;
#if HAS_LCD_MENU && !HAS_TOUCH_BUTTONS // ui.button_pressed issue with touchscreen
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
float Total_Prime = 0.0;
#endif
if (prime_flag == -1) { // The user wants to control how much filament gets purged
ui.capture();
ui.set_status_P(GET_TEXT(MSG_G26_MANUAL_PRIME), 99);
ui.chirp();
destination = current_position;
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ui.button_pressed()) {
ui.chirp();
destination.e += 0.25;
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) {
ui.release();
return G26_ERR;
}
#endif
prepare_internal_move_to_destination(fr_slow_e);
destination = current_position;
planner.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
}
ui.wait_for_release();
ui.set_status_P(GET_TEXT(MSG_G26_PRIME_DONE), 99);
ui.quick_feedback();
ui.release();
}
else
#endif
{
#if HAS_WIRED_LCD
ui.set_status_P(GET_TEXT(MSG_G26_FIXED_LENGTH), 99);
ui.quick_feedback();
#endif
destination = current_position;
destination.e += prime_length;
prepare_internal_move_to_destination(fr_slow_e);
destination.e -= prime_length;
retract_filament(destination);
}
return G26_OK;
}
/**
* Find the nearest point at which to print a circle
*/
mesh_index_pair find_closest_circle_to_print(const xy_pos_t &pos) {
mesh_index_pair out_point;
out_point.pos = -1;
#if ENABLED(UBL_HILBERT_CURVE)
auto test_func = [](uint8_t i, uint8_t j, void *data) -> bool {
if (!circle_flags.marked(i, j)) {
mesh_index_pair *out_point = (mesh_index_pair*)data;
out_point->pos.set(i, j); // Save its data
return true;
}
return false;
};
hilbert_curve::search_from_closest(pos, test_func, &out_point);
#else
float closest = 99999.99;
GRID_LOOP(i, j) {
if (!circle_flags.marked(i, j)) {
// We found a circle that needs to be printed
const xy_pos_t m = { _GET_MESH_X(i), _GET_MESH_Y(j) };
// Get the distance to this intersection
float f = (pos - m).magnitude();
// It is possible that we are being called with the values
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += (xy_pos - m).magnitude() / 15.0f;
// Add the specified amount of Random Noise to our search
if (g26_random_deviation > 1.0) f += random(0.0, g26_random_deviation);
if (f < closest) {
closest = f; // Found a closer un-printed location
out_point.pos.set(i, j); // Save its data
out_point.distance = closest;
}
}
}
#endif
circle_flags.mark(out_point); // Mark this location as done.
return out_point;
}
} g26_helper_t;
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit the mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*
* Parameters:
*
* B Bed Temperature
* C Continue from the Closest mesh point
* D Disable leveling before starting
* F Filament diameter
* H Hotend Temperature
* K Keep heaters on when completed
* L Layer Height
* O Ooze extrusion length
* P Prime length
* Q Retraction multiplier
* R Repetitions (number of grid points)
* S Nozzle Size (diameter) in mm
* T Tool index to change to, if included
* U Random deviation (50 if no value given)
* X X position
* Y Y position
*/
void GcodeSuite::G26() {
SERIAL_ECHOLNPGM("G26 starting...");
// Don't allow Mesh Validation without homing first,
// or if the parameter parsing did not go OK, abort
if (homing_needed_error()) return;
// Change the tool first, if specified
if (parser.seenval('T')) tool_change(parser.value_int());
g26_helper_t g26;
g26.ooze_amount = parser.linearval('O', OOZE_AMOUNT);
g26.continue_with_closest = parser.boolval('C');
g26.keep_heaters_on = parser.boolval('K');
// Accept 'I' if temperature presets are defined
#if PREHEAT_COUNT
const uint8_t preset_index = parser.seenval('I') ? _MIN(parser.value_byte(), PREHEAT_COUNT - 1) + 1 : 0;
#endif
#if HAS_HEATED_BED
// Get a temperature from 'I' or 'B'
celsius_t bedtemp = 0;
// Use the 'I' index if temperature presets are defined
#if PREHEAT_COUNT
if (preset_index) bedtemp = ui.material_preset[preset_index - 1].bed_temp;
#endif
// Look for 'B' Bed Temperature
if (parser.seenval('B')) bedtemp = parser.value_celsius();
if (bedtemp) {
if (!WITHIN(bedtemp, 40, BED_MAX_TARGET)) {
SERIAL_ECHOLNPAIR("?Specified bed temperature not plausible (40-", BED_MAX_TARGET, "C).");
return;
}
g26.bed_temp = bedtemp;
}
#endif // HAS_HEATED_BED
if (parser.seenval('L')) {
g26.layer_height = parser.value_linear_units();
if (!WITHIN(g26.layer_height, 0.0, 2.0)) {
SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
return;
}
}
if (parser.seen('Q')) {
if (parser.has_value()) {
g26.retraction_multiplier = parser.value_float();
if (!WITHIN(g26.retraction_multiplier, 0.05, 15.0)) {
SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
return;
}
}
else {
SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
return;
}
}
if (parser.seenval('S')) {
g26.nozzle = parser.value_float();
if (!WITHIN(g26.nozzle, 0.1, 2.0)) {
SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
return;
}
}
if (parser.seen('P')) {
if (!parser.has_value()) {
#if HAS_LCD_MENU
g26.prime_flag = -1;
#else
SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
return;
#endif
}
else {
g26.prime_flag++;
g26.prime_length = parser.value_linear_units();
if (!WITHIN(g26.prime_length, 0.0, 25.0)) {
SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
return;
}
}
}
if (parser.seenval('F')) {
g26.filament_diameter = parser.value_linear_units();
if (!WITHIN(g26.filament_diameter, 1.0, 4.0)) {
SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
return;
}
}
g26.extrusion_multiplier *= sq(1.75) / sq(g26.filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
g26.extrusion_multiplier *= g26.filament_diameter * sq(g26.nozzle) / sq(0.3); // Scale up by nozzle size
// Get a temperature from 'I' or 'H'
celsius_t noztemp = 0;
// Accept 'I' if temperature presets are defined
#if PREHEAT_COUNT
if (preset_index) noztemp = ui.material_preset[preset_index - 1].hotend_temp;
#endif
// Look for 'H' Hotend Temperature
if (parser.seenval('H')) noztemp = parser.value_celsius();
// If any preset or temperature was specified
if (noztemp) {
if (!WITHIN(noztemp, 165, (HEATER_0_MAXTEMP) - (HOTEND_OVERSHOOT))) {
SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
return;
}
g26.hotend_temp = noztemp;
}
// 'U' to Randomize and optionally set circle deviation
if (parser.seen('U')) {
randomSeed(millis());
// This setting will persist for the next G26
g26_random_deviation = parser.has_value() ? parser.value_float() : 50.0;
}
// Get repeat from 'R', otherwise do one full circuit
int16_t g26_repeats;
#if HAS_LCD_MENU
g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
#else
if (parser.seen('R'))
g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
else {
SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
return;
}
#endif
if (g26_repeats < 1) {
SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
return;
}
// Set a position with 'X' and/or 'Y'. Default: current_position
g26.xy_pos.set(parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position.x,
parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position.y);
if (!position_is_reachable(g26.xy_pos)) {
SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
return;
}
/**
* Wait until all parameters are verified before altering the state!
*/
set_bed_leveling_enabled(!parser.seen_test('D'));
do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES);
#if DISABLED(NO_VOLUMETRICS)
bool volumetric_was_enabled = parser.volumetric_enabled;
parser.volumetric_enabled = false;
planner.calculate_volumetric_multipliers();
#endif
if (g26.turn_on_heaters() != G26_OK) goto LEAVE;
current_position.e = 0.0;
sync_plan_position_e();
if (g26.prime_flag && g26.prime_nozzle() != G26_OK) goto LEAVE;
/**
* Bed is preheated
*
* Nozzle is at temperature
*
* Filament is primed!
*
* It's "Show Time" !!!
*/
circle_flags.reset();
// Move nozzle to the specified height for the first layer
destination = current_position;
destination.z = g26.layer_height;
move_to(destination, 0.0);
move_to(destination, g26.ooze_amount);
TERN_(HAS_LCD_MENU, ui.capture());
#if DISABLED(ARC_SUPPORT)
/**
* Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
*/
#define A_INT 30
#define _ANGS (360 / A_INT)
#define A_CNT (_ANGS / 2)
#define _IND(A) ((A + _ANGS * 8) % _ANGS)
#define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
#define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
#if A_CNT & 1
#error "A_CNT must be a positive value. Please change A_INT."
#endif
float trig_table[A_CNT];
LOOP_L_N(i, A_CNT)
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
#endif // !ARC_SUPPORT
mesh_index_pair location;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_START));
do {
// Find the nearest confluence
location = g26.find_closest_circle_to_print(g26.continue_with_closest ? xy_pos_t(current_position) : g26.xy_pos);
if (location.valid()) {
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_POINT_START));
const xy_pos_t circle = _GET_MESH_POS(location.pos);
// If this mesh location is outside the printable radius, skip it.
if (!position_is_reachable(circle)) continue;
// Determine where to start and end the circle,
// which is always drawn counter-clockwise.
const xy_int8_t st = location;
const bool f = st.y == 0,
r = st.x >= GRID_MAX_POINTS_X - 1,
b = st.y >= GRID_MAX_POINTS_Y - 1;
#if ENABLED(ARC_SUPPORT)
#define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
#define INTERSECTION_CIRCLE_DIAM ((INTERSECTION_CIRCLE_RADIUS) * 2)
xy_float_t e = { circle.x + INTERSECTION_CIRCLE_RADIUS, circle.y };
xyz_float_t s = e;
// Figure out where to start and end the arc - we always print counterclockwise
float arc_length = ARC_LENGTH(4);
if (st.x == 0) { // left edge
if (!f) { s.x = circle.x; s.y -= INTERSECTION_CIRCLE_RADIUS; }
if (!b) { e.x = circle.x; e.y += INTERSECTION_CIRCLE_RADIUS; }
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
}
else if (r) { // right edge
if (b) s.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
else s.set(circle.x, circle.y + INTERSECTION_CIRCLE_RADIUS);
if (f) e.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
else e.set(circle.x, circle.y - (INTERSECTION_CIRCLE_RADIUS));
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
}
else if (f) {
e.x -= INTERSECTION_CIRCLE_DIAM;
arc_length = ARC_LENGTH(2);
}
else if (b) {
s.x -= INTERSECTION_CIRCLE_DIAM;
arc_length = ARC_LENGTH(2);
}
const ab_float_t arc_offset = circle - s;
const xy_float_t dist = current_position - s; // Distance from the start of the actual circle
const float dist_start = HYPOT2(dist.x, dist.y);
const xyze_pos_t endpoint = {
e.x, e.y, g26.layer_height,
current_position.e + (arc_length * g26_e_axis_feedrate * g26.extrusion_multiplier)
};
if (dist_start > 2.0) {
s.z = g26.layer_height + 0.5f;
g26.retract_lift_move(s);
}
s.z = g26.layer_height;
move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
g26.recover_filament(destination);
{ REMEMBER(fr, feedrate_mm_s, PLANNER_XY_FEEDRATE() * 0.1f);
plan_arc(endpoint, arc_offset, false, 0); // Draw a counter-clockwise arc
destination = current_position;
}
if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation
#else // !ARC_SUPPORT
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
if (st.x == 0) { // Left edge? Just right half.
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
}
else if (r) { // Right edge? Just left half.
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
}
else if (f) { // Front edge? Just back half.
start_ind = 0; // 03:00
end_ind = 5; // 09:00
}
else if (b) { // Back edge? Just front half.
start_ind = 6; // 09:00
end_ind = 11; // 03:00
}
for (int8_t ind = start_ind; ind <= end_ind; ind++) {
if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation
xyz_float_t p = { circle.x + _COS(ind ), circle.y + _SIN(ind ), g26.layer_height },
q = { circle.x + _COS(ind + 1), circle.y + _SIN(ind + 1), g26.layer_height };
#if IS_KINEMATIC
// Check to make sure this segment is entirely on the bed, skip if not.
if (!position_is_reachable(p) || !position_is_reachable(q)) continue;
#elif HAS_ENDSTOPS
LIMIT(p.x, X_MIN_POS + 1, X_MAX_POS - 1); // Prevent hitting the endstops
LIMIT(p.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
LIMIT(q.x, X_MIN_POS + 1, X_MAX_POS - 1);
LIMIT(q.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
g26.print_line_from_here_to_there(p, q);
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
}
#endif // !ARC_SUPPORT
g26.connect_neighbor_with_line(location.pos, -1, 0);
g26.connect_neighbor_with_line(location.pos, 1, 0);
g26.connect_neighbor_with_line(location.pos, 0, -1);
g26.connect_neighbor_with_line(location.pos, 0, 1);
planner.synchronize();
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_POINT_FINISH));
if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE;
}
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (--g26_repeats && location.valid());
LEAVE:
ui.set_status_P(GET_TEXT(MSG_G26_LEAVING), -1);
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, ExtUI::G26_FINISH));
g26.retract_filament(destination);
destination.z = Z_CLEARANCE_BETWEEN_PROBES;
move_to(destination, 0); // Raise the nozzle
#if DISABLED(NO_VOLUMETRICS)
parser.volumetric_enabled = volumetric_was_enabled;
planner.calculate_volumetric_multipliers();
#endif
TERN_(HAS_LCD_MENU, ui.release()); // Give back control of the LCD
if (!g26.keep_heaters_on) {
TERN_(HAS_HEATED_BED, thermalManager.setTargetBed(0));
thermalManager.setTargetHotend(active_extruder, 0);
}
}
#endif // G26_MESH_VALIDATION

View File

@@ -0,0 +1,169 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(ASSISTED_TRAMMING)
#include "../gcode.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#include "../../feature/bedlevel/bedlevel.h"
#if HAS_MULTI_HOTEND
#include "../../module/tool_change.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
//
// Define tramming point names.
//
#include "../../feature/tramming.h"
/**
* G35: Read bed corners to help adjust bed screws
*
* S<screw_thread>
*
* Screw thread: 30 - Clockwise M3
* 31 - Counter-Clockwise M3
* 40 - Clockwise M4
* 41 - Counter-Clockwise M4
* 50 - Clockwise M5
* 51 - Counter-Clockwise M5
**/
void GcodeSuite::G35() {
DEBUG_SECTION(log_G35, "G35", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) log_machine_info();
float z_measured[G35_PROBE_COUNT] = { 0 };
const uint8_t screw_thread = parser.byteval('S', TRAMMING_SCREW_THREAD);
if (!WITHIN(screw_thread, 30, 51) || screw_thread % 10 > 1) {
SERIAL_ECHOLNPGM("?(S)crew thread must be 30, 31, 40, 41, 50, or 51.");
return;
}
// Wait for planner moves to finish!
planner.synchronize();
// Disable the leveling matrix before auto-aligning
#if HAS_LEVELING
#if ENABLED(RESTORE_LEVELING_AFTER_G35)
const bool leveling_was_active = planner.leveling_active;
#endif
set_bed_leveling_enabled(false);
#endif
#if ENABLED(CNC_WORKSPACE_PLANES)
workspace_plane = PLANE_XY;
#endif
// Always home with tool 0 active
#if HAS_MULTI_HOTEND
const uint8_t old_tool_index = active_extruder;
tool_change(0, true);
#endif
// Disable duplication mode on homing
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
// Home only Z axis when X and Y is trusted, otherwise all axes, if needed before this procedure
if (!all_axes_trusted()) process_subcommands_now_P(PSTR("G28Z"));
bool err_break = false;
// Probe all positions
LOOP_L_N(i, G35_PROBE_COUNT) {
// In BLTOUCH HS mode, the probe travels in a deployed state.
// Users of G35 might have a badly misaligned bed, so raise Z by the
// length of the deployed pin (BLTOUCH stroke < 7mm)
do_blocking_move_to_z(SUM_TERN(BLTOUCH_HS_MODE, Z_CLEARANCE_BETWEEN_PROBES, 7));
const float z_probed_height = probe.probe_at_point(screws_tilt_adjust_pos[i], PROBE_PT_RAISE, 0, true);
if (isnan(z_probed_height)) {
SERIAL_ECHOPAIR("G35 failed at point ", i + 1, " (");
SERIAL_ECHOPGM_P((char *)pgm_read_ptr(&tramming_point_name[i]));
SERIAL_CHAR(')');
SERIAL_ECHOLNPAIR_P(SP_X_STR, screws_tilt_adjust_pos[i].x, SP_Y_STR, screws_tilt_adjust_pos[i].y);
err_break = true;
break;
}
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOPAIR("Probing point ", i + 1, " (");
DEBUG_ECHOPGM_P((char *)pgm_read_ptr(&tramming_point_name[i]));
DEBUG_CHAR(')');
DEBUG_ECHOLNPAIR_P(SP_X_STR, screws_tilt_adjust_pos[i].x, SP_Y_STR, screws_tilt_adjust_pos[i].y, SP_Z_STR, z_probed_height);
}
z_measured[i] = z_probed_height;
}
if (!err_break) {
const float threads_factor[] = { 0.5, 0.7, 0.8 };
// Calculate adjusts
LOOP_S_L_N(i, 1, G35_PROBE_COUNT) {
const float diff = z_measured[0] - z_measured[i],
adjust = ABS(diff) < 0.001f ? 0 : diff / threads_factor[(screw_thread - 30) / 10];
const int full_turns = trunc(adjust);
const float decimal_part = adjust - float(full_turns);
const int minutes = trunc(decimal_part * 60.0f);
SERIAL_ECHOPGM("Turn ");
SERIAL_ECHOPGM_P((char *)pgm_read_ptr(&tramming_point_name[i]));
SERIAL_ECHOPAIR(" ", (screw_thread & 1) == (adjust > 0) ? "CCW" : "CW", " by ", ABS(full_turns), " turns");
if (minutes) SERIAL_ECHOPAIR(" and ", ABS(minutes), " minutes");
if (ENABLED(REPORT_TRAMMING_MM)) SERIAL_ECHOPAIR(" (", -diff, "mm)");
SERIAL_EOL();
}
}
else
SERIAL_ECHOLNPGM("G35 aborted.");
// Restore the active tool after homing
#if HAS_MULTI_HOTEND
tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER)); // Fetch previous toolhead if not PARKING_EXTRUDER
#endif
#if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G35)
set_bed_leveling_enabled(leveling_was_active);
#endif
// Stow the probe, as the last call to probe.probe_at_point(...) left
// the probe deployed if it was successful.
probe.stow();
move_to_tramming_wait_pos();
// After this operation the Z position needs correction
set_axis_never_homed(Z_AXIS);
}
#endif // ASSISTED_TRAMMING

View File

@@ -0,0 +1,73 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_MESH
#include "../gcode.h"
#include "../../MarlinCore.h" // for IsRunning()
#include "../../module/motion.h"
#include "../../module/probe.h" // for probe.offset
#include "../../feature/bedlevel/bedlevel.h"
/**
* G42: Move X & Y axes to mesh coordinates (I & J)
*/
void GcodeSuite::G42() {
if (MOTION_CONDITIONS) {
const bool hasI = parser.seenval('I');
const int8_t ix = hasI ? parser.value_int() : 0;
const bool hasJ = parser.seenval('J');
const int8_t iy = hasJ ? parser.value_int() : 0;
if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
SERIAL_ECHOLNPGM(STR_ERR_MESH_XY);
return;
}
// Move to current_position, as modified by I, J, P parameters
destination = current_position;
if (hasI) destination.x = _GET_MESH_X(ix);
if (hasJ) destination.y = _GET_MESH_Y(iy);
#if HAS_PROBE_XY_OFFSET
if (parser.boolval('P')) {
if (hasI) destination.x -= probe.offset_xy.x;
if (hasJ) destination.y -= probe.offset_xy.y;
}
#endif
const feedRate_t fval = parser.linearval('F'),
fr_mm_s = MMM_TO_MMS(fval > 0 ? fval : 0.0f);
// SCARA kinematic has "safe" XY raw moves
#if IS_SCARA
prepare_internal_fast_move_to_destination(fr_mm_s);
#else
prepare_internal_move_to_destination(fr_mm_s);
#endif
}
}
#endif // HAS_MESH

View File

@@ -0,0 +1,245 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_LEVELING
#include "../gcode.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#if ENABLED(EEPROM_SETTINGS)
#include "../../module/settings.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../../lcd/extui/ui_api.h"
#endif
//#define M420_C_USE_MEAN
/**
* M420: Enable/Disable Bed Leveling and/or set the Z fade height.
*
* S[bool] Turns leveling on or off
* Z[height] Sets the Z fade height (0 or none to disable)
* V[bool] Verbose - Print the leveling grid
*
* With AUTO_BED_LEVELING_UBL only:
*
* L[index] Load UBL mesh from index (0 is default)
* T[map] 0:Human-readable 1:CSV 2:"LCD" 4:Compact
*
* With mesh-based leveling only:
*
* C Center mesh on the mean of the lowest and highest
*
* With MARLIN_DEV_MODE:
* S2 Create a simple random mesh and enable
*/
void GcodeSuite::M420() {
const bool seen_S = parser.seen('S'),
to_enable = seen_S ? parser.value_bool() : planner.leveling_active;
#if ENABLED(MARLIN_DEV_MODE)
if (parser.intval('S') == 2) {
const float x_min = probe.min_x(), x_max = probe.max_x(),
y_min = probe.min_y(), y_max = probe.max_y();
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_start.set(x_min, y_min);
bilinear_grid_spacing.set((x_max - x_min) / (GRID_MAX_CELLS_X),
(y_max - y_min) / (GRID_MAX_CELLS_Y));
#endif
GRID_LOOP(x, y) {
Z_VALUES(x, y) = 0.001 * random(-200, 200);
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, Z_VALUES(x, y)));
}
SERIAL_ECHOPGM("Simulated " STRINGIFY(GRID_MAX_POINTS_X) "x" STRINGIFY(GRID_MAX_POINTS_Y) " mesh ");
SERIAL_ECHOPAIR(" (", x_min);
SERIAL_CHAR(','); SERIAL_ECHO(y_min);
SERIAL_ECHOPAIR(")-(", x_max);
SERIAL_CHAR(','); SERIAL_ECHO(y_max);
SERIAL_ECHOLNPGM(")");
}
#endif
xyz_pos_t oldpos = current_position;
// If disabling leveling do it right away
// (Don't disable for just M420 or M420 V)
if (seen_S && !to_enable) set_bed_leveling_enabled(false);
#if ENABLED(AUTO_BED_LEVELING_UBL)
// L to load a mesh from the EEPROM
if (parser.seen('L')) {
set_bed_leveling_enabled(false);
#if ENABLED(EEPROM_SETTINGS)
const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
const int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_ECHOLNPGM("?EEPROM storage not available.");
return;
}
if (!WITHIN(storage_slot, 0, a - 1)) {
SERIAL_ECHOLNPGM("?Invalid storage slot.");
SERIAL_ECHOLNPAIR("?Use 0 to ", a - 1);
return;
}
settings.load_mesh(storage_slot);
ubl.storage_slot = storage_slot;
#else
SERIAL_ECHOLNPGM("?EEPROM storage not available.");
return;
#endif
}
// L or V display the map info
if (parser.seen("LV")) {
ubl.display_map(parser.byteval('T'));
SERIAL_ECHOPGM("Mesh is ");
if (!ubl.mesh_is_valid()) SERIAL_ECHOPGM("in");
SERIAL_ECHOLNPAIR("valid\nStorage slot: ", ubl.storage_slot);
}
#endif // AUTO_BED_LEVELING_UBL
const bool seenV = parser.seen_test('V');
#if HAS_MESH
if (leveling_is_valid()) {
// Subtract the given value or the mean from all mesh values
if (parser.seen('C')) {
const float cval = parser.value_float();
#if ENABLED(AUTO_BED_LEVELING_UBL)
set_bed_leveling_enabled(false);
ubl.adjust_mesh_to_mean(true, cval);
#else
#if ENABLED(M420_C_USE_MEAN)
// Get the sum and average of all mesh values
float mesh_sum = 0;
GRID_LOOP(x, y) mesh_sum += Z_VALUES(x, y);
const float zmean = mesh_sum / float(GRID_MAX_POINTS);
#else // midrange
// Find the low and high mesh values.
float lo_val = 100, hi_val = -100;
GRID_LOOP(x, y) {
const float z = Z_VALUES(x, y);
NOMORE(lo_val, z);
NOLESS(hi_val, z);
}
// Get the midrange plus C value. (The median may be better.)
const float zmean = (lo_val + hi_val) / 2.0 + cval;
#endif
// If not very close to 0, adjust the mesh
if (!NEAR_ZERO(zmean)) {
set_bed_leveling_enabled(false);
// Subtract the mean from all values
GRID_LOOP(x, y) {
Z_VALUES(x, y) -= zmean;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, Z_VALUES(x, y)));
}
TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
}
#endif
}
}
else if (to_enable || seenV) {
SERIAL_ECHO_MSG("Invalid mesh.");
goto EXIT_M420;
}
#endif // HAS_MESH
// V to print the matrix or mesh
if (seenV) {
#if ABL_PLANAR
planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
#else
if (leveling_is_valid()) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
print_bilinear_leveling_grid();
TERN_(ABL_BILINEAR_SUBDIVISION, print_bilinear_leveling_grid_virt());
#elif ENABLED(MESH_BED_LEVELING)
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
mbl.report_mesh();
#endif
}
#endif
}
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units(), false);
#endif
// Enable leveling if specified, or if previously active
set_bed_leveling_enabled(to_enable);
#if HAS_MESH
EXIT_M420:
#endif
// Error if leveling failed to enable or reenable
if (to_enable && !planner.leveling_active)
SERIAL_ERROR_MSG(STR_ERR_M420_FAILED);
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Bed Leveling ");
serialprintln_onoff(planner.leveling_active);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Fade Height ");
if (planner.z_fade_height > 0.0)
SERIAL_ECHOLN(planner.z_fade_height);
else
SERIAL_ECHOLNPGM(STR_OFF);
#endif
// Report change in position
if (oldpos != current_position)
report_current_position();
}
#endif // HAS_LEVELING

View File

@@ -0,0 +1,905 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* G29.cpp - Auto Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_ABL_NOT_UBL
#include "../../gcode.h"
#include "../../../feature/bedlevel/bedlevel.h"
#include "../../../module/motion.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/probe.h"
#include "../../queue.h"
#if ENABLED(PROBE_TEMP_COMPENSATION)
#include "../../../feature/probe_temp_comp.h"
#include "../../../module/temperature.h"
#endif
#if HAS_STATUS_MESSAGE
#include "../../../lcd/marlinui.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
#include "../../../libs/least_squares_fit.h"
#endif
#if ABL_PLANAR
#include "../../../libs/vector_3.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../../core/debug_out.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#endif
#if ENABLED(DWIN_CREALITY_LCD)
#include "../../../lcd/e3v2/creality/dwin.h"
#endif
#if HAS_MULTI_HOTEND
#include "../../../module/tool_change.h"
#endif
#if ABL_USES_GRID
#if ENABLED(PROBE_Y_FIRST)
#define PR_OUTER_VAR abl.meshCount.x
#define PR_OUTER_SIZE abl.grid_points.x
#define PR_INNER_VAR abl.meshCount.y
#define PR_INNER_SIZE abl.grid_points.y
#else
#define PR_OUTER_VAR abl.meshCount.y
#define PR_OUTER_SIZE abl.grid_points.y
#define PR_INNER_VAR abl.meshCount.x
#define PR_INNER_SIZE abl.grid_points.x
#endif
#endif
#define G29_RETURN(b) return TERN_(G29_RETRY_AND_RECOVER, b)
// For manual probing values persist over multiple G29
class G29_State {
public:
int verbose_level;
xy_pos_t probePos;
float measured_z;
bool dryrun,
reenable;
#if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
int abl_probe_index;
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
int abl_points;
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
static constexpr int abl_points = 3;
#elif ABL_USES_GRID
static constexpr int abl_points = GRID_MAX_POINTS;
#endif
#if ABL_USES_GRID
xy_int8_t meshCount;
xy_pos_t probe_position_lf,
probe_position_rb;
xy_float_t gridSpacing; // = { 0.0f, 0.0f }
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
bool topography_map;
xy_uint8_t grid_points;
#else // Bilinear
static constexpr xy_uint8_t grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
float Z_offset;
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
mean;
#endif
#endif
};
#if ABL_USES_GRID && EITHER(AUTO_BED_LEVELING_3POINT, AUTO_BED_LEVELING_BILINEAR)
constexpr xy_uint8_t G29_State::grid_points;
constexpr int G29_State::abl_points;
#endif
/**
* G29: Detailed Z probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* O Auto-level only if needed
*
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or alter the bed level data. Useful to check the topology
* after a first run of G29.
*
* J Jettison current bed leveling data
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* Parameters With LINEAR leveling only:
*
* P Set the size of the grid that will be probed (P x P points).
* Example: "G29 P4"
*
* X Set the X size of the grid that will be probed (X x Y points).
* Example: "G29 X7 Y5"
*
* Y Set the Y size of the grid that will be probed (X x Y points).
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
* Not supported by non-linear delta printer bed leveling.
*
* Parameters With LINEAR and BILINEAR leveling only:
*
* S Set the XY travel speed between probe points (in units/min)
*
* H Set bounds to a centered square H x H units in size
*
* -or-
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Parameters with DEBUG_LEVELING_FEATURE only:
*
* C Make a totally fake grid with no actual probing.
* For use in testing when no probing is possible.
*
* Parameters with BILINEAR leveling only:
*
* Z Supply an additional Z probe offset
*
* Extra parameters with PROBE_MANUALLY:
*
* To do manual probing simply repeat G29 until the procedure is complete.
* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
*
* Q Query leveling and G29 state
*
* A Abort current leveling procedure
*
* Extra parameters with BILINEAR only:
*
* W Write a mesh point. (If G29 is idle.)
* I X index for mesh point
* J Y index for mesh point
* X X for mesh point, overrides I
* Y Y for mesh point, overrides J
* Z Z for mesh point. Otherwise, raw current Z.
*
* Without PROBE_MANUALLY:
*
* E By default G29 will engage the Z probe, test the bed, then disengage.
* Include "E" to engage/disengage the Z probe for each sample.
* There's no extra effect if you have a fixed Z probe.
*/
G29_TYPE GcodeSuite::G29() {
DEBUG_SECTION(log_G29, "G29", DEBUGGING(LEVELING));
TERN_(PROBE_MANUALLY, static) G29_State abl;
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_PROBE));
reset_stepper_timeout();
const bool seenQ = EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY) && parser.seen_test('Q');
// G29 Q is also available if debugging
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (seenQ || DEBUGGING(LEVELING)) log_machine_info();
if (DISABLED(PROBE_MANUALLY) && seenQ) G29_RETURN(false);
#endif
const bool seenA = TERN0(PROBE_MANUALLY, parser.seen_test('A')),
no_action = seenA || seenQ,
faux = ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY) ? parser.boolval('C') : no_action;
if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Auto-level not needed, skip");
G29_RETURN(false);
}
// Send 'N' to force homing before G29 (internal only)
if (parser.seen_test('N'))
process_subcommands_now_P(TERN(CAN_SET_LEVELING_AFTER_G28, PSTR("G28L0"), G28_STR));
// Don't allow auto-leveling without homing first
if (homing_needed_error()) G29_RETURN(false);
#if ENABLED(AUTO_BED_LEVELING_3POINT)
vector_3 points[3];
probe.get_three_points(points);
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
struct linear_fit_data lsf_results;
#endif
/**
* On the initial G29 fetch command parameters.
*/
if (!g29_in_progress) {
TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0));
#if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
abl.abl_probe_index = -1;
#endif
abl.reenable = planner.leveling_active;
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const bool seen_w = parser.seen_test('W');
if (seen_w) {
if (!leveling_is_valid()) {
SERIAL_ERROR_MSG("No bilinear grid");
G29_RETURN(false);
}
const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position.z;
if (!WITHIN(rz, -10, 10)) {
SERIAL_ERROR_MSG("Bad Z value");
G29_RETURN(false);
}
const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1);
if (!isnan(rx) && !isnan(ry)) {
// Get nearest i / j from rx / ry
i = (rx - bilinear_start.x + 0.5 * abl.gridSpacing.x) / abl.gridSpacing.x;
j = (ry - bilinear_start.y + 0.5 * abl.gridSpacing.y) / abl.gridSpacing.y;
LIMIT(i, 0, (GRID_MAX_POINTS_X) - 1);
LIMIT(j, 0, (GRID_MAX_POINTS_Y) - 1);
}
if (WITHIN(i, 0, (GRID_MAX_POINTS_X) - 1) && WITHIN(j, 0, (GRID_MAX_POINTS_Y) - 1)) {
set_bed_leveling_enabled(false);
z_values[i][j] = rz;
TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, rz));
set_bed_leveling_enabled(abl.reenable);
if (abl.reenable) report_current_position();
}
G29_RETURN(false);
} // parser.seen_test('W')
#else
constexpr bool seen_w = false;
#endif
// Jettison bed leveling data
if (!seen_w && parser.seen_test('J')) {
reset_bed_level();
G29_RETURN(false);
}
abl.verbose_level = parser.intval('V');
if (!WITHIN(abl.verbose_level, 0, 4)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
G29_RETURN(false);
}
abl.dryrun = parser.boolval('D') || TERN0(PROBE_MANUALLY, no_action);
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
incremental_LSF_reset(&lsf_results);
abl.topography_map = abl.verbose_level > 2 || parser.boolval('T');
// X and Y specify points in each direction, overriding the default
// These values may be saved with the completed mesh
abl.grid_points.set(
parser.byteval('X', GRID_MAX_POINTS_X),
parser.byteval('Y', GRID_MAX_POINTS_Y)
);
if (parser.seenval('P')) abl.grid_points.x = abl.grid_points.y = parser.value_int();
if (!WITHIN(abl.grid_points.x, 2, GRID_MAX_POINTS_X)) {
SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
G29_RETURN(false);
}
if (!WITHIN(abl.grid_points.y, 2, GRID_MAX_POINTS_Y)) {
SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
G29_RETURN(false);
}
abl.abl_points = abl.grid_points.x * abl.grid_points.y;
abl.mean = 0;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
abl.Z_offset = parser.linearval('Z');
#endif
#if ABL_USES_GRID
xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_FEEDRATE));
if (!xy_probe_feedrate_mm_s) xy_probe_feedrate_mm_s = PLANNER_XY_FEEDRATE();
NOLESS(xy_probe_feedrate_mm_s, planner.settings.min_feedrate_mm_s);
const float x_min = probe.min_x(), x_max = probe.max_x(),
y_min = probe.min_y(), y_max = probe.max_y();
if (parser.seen('H')) {
const int16_t size = (int16_t)parser.value_linear_units();
abl.probe_position_lf.set(_MAX((X_CENTER) - size / 2, x_min), _MAX((Y_CENTER) - size / 2, y_min));
abl.probe_position_rb.set(_MIN(abl.probe_position_lf.x + size, x_max), _MIN(abl.probe_position_lf.y + size, y_max));
}
else {
abl.probe_position_lf.set(parser.linearval('L', x_min), parser.linearval('F', y_min));
abl.probe_position_rb.set(parser.linearval('R', x_max), parser.linearval('B', y_max));
}
if (!probe.good_bounds(abl.probe_position_lf, abl.probe_position_rb)) {
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPAIR("G29 L", abl.probe_position_lf.x, " R", abl.probe_position_rb.x,
" F", abl.probe_position_lf.y, " B", abl.probe_position_rb.y);
}
SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
G29_RETURN(false);
}
// Probe at the points of a lattice grid
abl.gridSpacing.set((abl.probe_position_rb.x - abl.probe_position_lf.x) / (abl.grid_points.x - 1),
(abl.probe_position_rb.y - abl.probe_position_lf.y) / (abl.grid_points.y - 1));
#endif // ABL_USES_GRID
if (abl.verbose_level > 0) {
SERIAL_ECHOPGM("G29 Auto Bed Leveling");
if (abl.dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
SERIAL_EOL();
}
planner.synchronize();
#if ENABLED(AUTO_BED_LEVELING_3POINT)
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> 3-point Leveling");
points[0].z = points[1].z = points[2].z = 0; // Probe at 3 arbitrary points
#endif
#if BOTH(AUTO_BED_LEVELING_BILINEAR, EXTENSIBLE_UI)
ExtUI::onMeshLevelingStart();
#endif
if (!faux) {
remember_feedrate_scaling_off();
#if ENABLED(PREHEAT_BEFORE_LEVELING)
if (!abl.dryrun) probe.preheat_for_probing(LEVELING_NOZZLE_TEMP, LEVELING_BED_TEMP);
#endif
}
// Disable auto bed leveling during G29.
// Be formal so G29 can be done successively without G28.
if (!no_action) set_bed_leveling_enabled(false);
// Deploy certain probes before starting probing
#if HAS_BED_PROBE
if (ENABLED(BLTOUCH))
do_z_clearance(Z_CLEARANCE_DEPLOY_PROBE);
else if (probe.deploy()) {
set_bed_leveling_enabled(abl.reenable);
G29_RETURN(false);
}
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (TERN1(PROBE_MANUALLY, !no_action)
&& (abl.gridSpacing != bilinear_grid_spacing || abl.probe_position_lf != bilinear_start)
) {
// Reset grid to 0.0 or "not probed". (Also disables ABL)
reset_bed_level();
// Initialize a grid with the given dimensions
bilinear_grid_spacing = abl.gridSpacing;
bilinear_start = abl.probe_position_lf;
// Can't re-enable (on error) until the new grid is written
abl.reenable = false;
}
#endif // AUTO_BED_LEVELING_BILINEAR
} // !g29_in_progress
#if ENABLED(PROBE_MANUALLY)
// For manual probing, get the next index to probe now.
// On the first probe this will be incremented to 0.
if (!no_action) {
++abl.abl_probe_index;
g29_in_progress = true;
}
// Abort current G29 procedure, go back to idle state
if (seenA && g29_in_progress) {
SERIAL_ECHOLNPGM("Manual G29 aborted");
SET_SOFT_ENDSTOP_LOOSE(false);
set_bed_leveling_enabled(abl.reenable);
g29_in_progress = false;
TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
}
// Query G29 status
if (abl.verbose_level || seenQ) {
SERIAL_ECHOPGM("Manual G29 ");
if (g29_in_progress)
SERIAL_ECHOLNPAIR("point ", _MIN(abl.abl_probe_index + 1, abl.abl_points), " of ", abl.abl_points);
else
SERIAL_ECHOLNPGM("idle");
}
if (no_action) G29_RETURN(false);
if (abl.abl_probe_index == 0) {
// For the initial G29 S2 save software endstop state
SET_SOFT_ENDSTOP_LOOSE(true);
// Move close to the bed before the first point
do_blocking_move_to_z(0);
}
else {
#if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
const uint16_t index = abl.abl_probe_index - 1;
#endif
// For G29 after adjusting Z.
// Save the previous Z before going to the next point
abl.measured_z = current_position.z;
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
abl.mean += abl.measured_z;
abl.eqnBVector[index] = abl.measured_z;
abl.eqnAMatrix[index + 0 * abl.abl_points] = abl.probePos.x;
abl.eqnAMatrix[index + 1 * abl.abl_points] = abl.probePos.y;
abl.eqnAMatrix[index + 2 * abl.abl_points] = 1;
incremental_LSF(&lsf_results, abl.probePos, abl.measured_z);
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
points[index].z = abl.measured_z;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float newz = abl.measured_z + abl.Z_offset;
z_values[abl.meshCount.x][abl.meshCount.y] = newz;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(abl.meshCount, newz));
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), abl.meshCount.x, SP_Y_STR, abl.meshCount.y, SP_Z_STR, abl.measured_z + abl.Z_offset);
#endif
}
//
// If there's another point to sample, move there with optional lift.
//
#if ABL_USES_GRID
// Skip any unreachable points
while (abl.abl_probe_index < abl.abl_points) {
// Set abl.meshCount.x, abl.meshCount.y based on abl.abl_probe_index, with zig-zag
PR_OUTER_VAR = abl.abl_probe_index / PR_INNER_SIZE;
PR_INNER_VAR = abl.abl_probe_index - (PR_OUTER_VAR * PR_INNER_SIZE);
// Probe in reverse order for every other row/column
const bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_SIZE) & 1);
if (zig) PR_INNER_VAR = (PR_INNER_SIZE - 1) - PR_INNER_VAR;
abl.probePos = abl.probe_position_lf + abl.gridSpacing * abl.meshCount.asFloat();
TERN_(AUTO_BED_LEVELING_LINEAR, abl.indexIntoAB[abl.meshCount.x][abl.meshCount.y] = abl.abl_probe_index);
// Keep looping till a reachable point is found
if (position_is_reachable(abl.probePos)) break;
++abl.abl_probe_index;
}
// Is there a next point to move to?
if (abl.abl_probe_index < abl.abl_points) {
_manual_goto_xy(abl.probePos); // Can be used here too!
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
SET_SOFT_ENDSTOP_LOOSE(true);
G29_RETURN(false);
}
else {
// Leveling done! Fall through to G29 finishing code below
SERIAL_ECHOLNPGM("Grid probing done.");
// Re-enable software endstops, if needed
SET_SOFT_ENDSTOP_LOOSE(false);
}
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// Probe at 3 arbitrary points
if (abl.abl_probe_index < abl.abl_points) {
abl.probePos = xy_pos_t(points[abl.abl_probe_index]);
_manual_goto_xy(abl.probePos);
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
SET_SOFT_ENDSTOP_LOOSE(true);
G29_RETURN(false);
}
else {
SERIAL_ECHOLNPGM("3-point probing done.");
// Re-enable software endstops, if needed
SET_SOFT_ENDSTOP_LOOSE(false);
if (!abl.dryrun) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) planeNormal *= -1;
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written
abl.reenable = false;
}
}
#endif // AUTO_BED_LEVELING_3POINT
#else // !PROBE_MANUALLY
{
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
abl.measured_z = 0;
#if ABL_USES_GRID
bool zig = PR_OUTER_SIZE & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
abl.measured_z = 0;
// Outer loop is X with PROBE_Y_FIRST enabled
// Outer loop is Y with PROBE_Y_FIRST disabled
for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_SIZE && !isnan(abl.measured_z); PR_OUTER_VAR++) {
int8_t inStart, inStop, inInc;
if (zig) { // Zig away from origin
inStart = 0; // Left or front
inStop = PR_INNER_SIZE; // Right or back
inInc = 1; // Zig right
}
else { // Zag towards origin
inStart = PR_INNER_SIZE - 1; // Right or back
inStop = -1; // Left or front
inInc = -1; // Zag left
}
zig ^= true; // zag
// An index to print current state
uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_SIZE) + 1;
// Inner loop is Y with PROBE_Y_FIRST enabled
// Inner loop is X with PROBE_Y_FIRST disabled
for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
abl.probePos = abl.probe_position_lf + abl.gridSpacing * abl.meshCount.asFloat();
TERN_(AUTO_BED_LEVELING_LINEAR, abl.indexIntoAB[abl.meshCount.x][abl.meshCount.y] = ++abl.abl_probe_index); // 0...
// Avoid probing outside the round or hexagonal area
if (TERN0(IS_KINEMATIC, !probe.can_reach(abl.probePos))) continue;
if (abl.verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", pt_index, "/", abl.abl_points, ".");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(abl.abl_points)));
abl.measured_z = faux ? 0.001f * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
if (isnan(abl.measured_z)) {
set_bed_leveling_enabled(abl.reenable);
break; // Breaks out of both loops
}
#if ENABLED(PROBE_TEMP_COMPENSATION)
temp_comp.compensate_measurement(TSI_BED, thermalManager.degBed(), abl.measured_z);
temp_comp.compensate_measurement(TSI_PROBE, thermalManager.degProbe(), abl.measured_z);
TERN_(USE_TEMP_EXT_COMPENSATION, temp_comp.compensate_measurement(TSI_EXT, thermalManager.degHotend(), abl.measured_z));
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
abl.mean += abl.measured_z;
abl.eqnBVector[abl.abl_probe_index] = abl.measured_z;
abl.eqnAMatrix[abl.abl_probe_index + 0 * abl.abl_points] = abl.probePos.x;
abl.eqnAMatrix[abl.abl_probe_index + 1 * abl.abl_points] = abl.probePos.y;
abl.eqnAMatrix[abl.abl_probe_index + 2 * abl.abl_points] = 1;
incremental_LSF(&lsf_results, abl.probePos, abl.measured_z);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float z = abl.measured_z + abl.Z_offset;
z_values[abl.meshCount.x][abl.meshCount.y] = z;
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(abl.meshCount, z));
#endif
abl.reenable = false;
idle_no_sleep();
} // inner
} // outer
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// Probe at 3 arbitrary points
LOOP_L_N(i, 3) {
if (abl.verbose_level) SERIAL_ECHOLNPAIR("Probing point ", i + 1, "/3.");
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i + 1)));
// Retain the last probe position
abl.probePos = xy_pos_t(points[i]);
abl.measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
if (isnan(abl.measured_z)) {
set_bed_leveling_enabled(abl.reenable);
break;
}
points[i].z = abl.measured_z;
}
if (!abl.dryrun && !isnan(abl.measured_z)) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) planeNormal *= -1;
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written
abl.reenable = false;
}
#endif // AUTO_BED_LEVELING_3POINT
TERN_(HAS_STATUS_MESSAGE, ui.reset_status());
// Stow the probe. No raise for FIX_MOUNTED_PROBE.
if (probe.stow()) {
set_bed_leveling_enabled(abl.reenable);
abl.measured_z = NAN;
}
}
#endif // !PROBE_MANUALLY
//
// G29 Finishing Code
//
// Unless this is a dry run, auto bed leveling will
// definitely be enabled after this point.
//
// If code above wants to continue leveling, it should
// return or loop before this point.
//
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
#if ENABLED(PROBE_MANUALLY)
g29_in_progress = false;
TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
#endif
// Calculate leveling, print reports, correct the position
if (!isnan(abl.measured_z)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!abl.dryrun) extrapolate_unprobed_bed_level();
print_bilinear_leveling_grid();
refresh_bed_level();
TERN_(ABL_BILINEAR_SUBDIVISION, print_bilinear_leveling_grid_virt());
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
// For LINEAR leveling calculate matrix, print reports, correct the position
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/
struct { float a, b, d; } plane_equation_coefficients;
finish_incremental_LSF(&lsf_results);
plane_equation_coefficients.a = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
plane_equation_coefficients.d = -lsf_results.D;
abl.mean /= abl.abl_points;
if (abl.verbose_level) {
SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
if (abl.verbose_level > 2)
SERIAL_ECHOPAIR_F("\nMean of sampled points: ", abl.mean, 8);
SERIAL_EOL();
}
// Create the matrix but don't correct the position yet
if (!abl.dryrun)
planner.bed_level_matrix = matrix_3x3::create_look_at(
vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
);
// Show the Topography map if enabled
if (abl.topography_map) {
float min_diff = 999;
auto print_topo_map = [&](PGM_P const title, const bool get_min) {
SERIAL_ECHOPGM_P(title);
for (int8_t yy = abl.grid_points.y - 1; yy >= 0; yy--) {
LOOP_L_N(xx, abl.grid_points.x) {
const int ind = abl.indexIntoAB[xx][yy];
xyz_float_t tmp = { abl.eqnAMatrix[ind + 0 * abl.abl_points],
abl.eqnAMatrix[ind + 1 * abl.abl_points], 0 };
planner.bed_level_matrix.apply_rotation_xyz(tmp.x, tmp.y, tmp.z);
if (get_min) NOMORE(min_diff, abl.eqnBVector[ind] - tmp.z);
const float subval = get_min ? abl.mean : tmp.z + min_diff,
diff = abl.eqnBVector[ind] - subval;
SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
SERIAL_ECHO_F(diff, 5);
} // xx
SERIAL_EOL();
} // yy
SERIAL_EOL();
};
print_topo_map(PSTR("\nBed Height Topography:\n"
" +--- BACK --+\n"
" | |\n"
" L | (+) | R\n"
" E | | I\n"
" F | (-) N (+) | G\n"
" T | | H\n"
" | (-) | T\n"
" | |\n"
" O-- FRONT --+\n"
" (0,0)\n"), true);
if (abl.verbose_level > 3)
print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
} // abl.topography_map
#endif // AUTO_BED_LEVELING_LINEAR
#if ABL_PLANAR
// For LINEAR and 3POINT leveling correct the current position
if (abl.verbose_level > 0)
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
if (!abl.dryrun) {
//
// Correct the current XYZ position based on the tilted plane.
//
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
xyze_pos_t converted = current_position;
planner.force_unapply_leveling(converted); // use conversion machinery
// Use the last measured distance to the bed, if possible
if ( NEAR(current_position.x, abl.probePos.x - probe.offset_xy.x)
&& NEAR(current_position.y, abl.probePos.y - probe.offset_xy.y)
) {
const float simple_z = current_position.z - abl.measured_z;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
converted.z = simple_z;
}
// The rotated XY and corrected Z are now current_position
current_position = converted;
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
}
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!abl.dryrun) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z);
// Unapply the offset because it is going to be immediately applied
// and cause compensation movement in Z
const float fade_scaling_factor = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.fade_scaling_factor_for_z(current_position.z), 1);
current_position.z -= fade_scaling_factor * bilinear_z_offset(current_position);
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(" corrected Z:", current_position.z);
}
#endif // ABL_PLANAR
// Auto Bed Leveling is complete! Enable if possible.
planner.leveling_active = !abl.dryrun || abl.reenable;
} // !isnan(abl.measured_z)
// Restore state after probing
if (!faux) restore_feedrate_and_scaling();
// Sync the planner from the current_position
if (planner.leveling_active) sync_plan_position();
#if HAS_BED_PROBE
probe.move_z_after_probing();
#endif
#ifdef Z_PROBE_END_SCRIPT
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
planner.synchronize();
process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT));
#endif
#if ENABLED(DWIN_CREALITY_LCD)
DWIN_CompletedLeveling();
#endif
report_current_position();
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_IDLE));
G29_RETURN(isnan(abl.measured_z));
}
#endif // HAS_ABL_NOT_UBL

View File

@@ -0,0 +1,74 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* M421.cpp - Auto Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#include "../../gcode.h"
#include "../../../feature/bedlevel/bedlevel.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#endif
/**
* M421: Set one or more Mesh Bed Leveling Z coordinates
*
* Usage:
* M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset>
*
* - If I is omitted, set the entire row
* - If J is omitted, set the entire column
* - If both I and J are omitted, set all
*/
void GcodeSuite::M421() {
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
const bool hasZ = parser.seenval('Z'),
hasQ = !hasZ && parser.seenval('Q');
if (hasZ || hasQ) {
if (WITHIN(ix, -1, GRID_MAX_POINTS_X - 1) && WITHIN(iy, -1, GRID_MAX_POINTS_Y - 1)) {
const float zval = parser.value_linear_units();
uint8_t sx = ix >= 0 ? ix : 0, ex = ix >= 0 ? ix : GRID_MAX_POINTS_X - 1,
sy = iy >= 0 ? iy : 0, ey = iy >= 0 ? iy : GRID_MAX_POINTS_Y - 1;
LOOP_S_LE_N(x, sx, ex) {
LOOP_S_LE_N(y, sy, ey) {
z_values[x][y] = zval + (hasQ ? z_values[x][y] : 0);
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
}
}
TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
}
else
SERIAL_ERROR_MSG(STR_ERR_MESH_XY);
}
else
SERIAL_ERROR_MSG(STR_ERR_M421_PARAMETERS);
}
#endif // AUTO_BED_LEVELING_BILINEAR

View File

@@ -0,0 +1,222 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* G29.cpp - Mesh Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(MESH_BED_LEVELING)
#include "../../../feature/bedlevel/bedlevel.h"
#include "../../gcode.h"
#include "../../queue.h"
#include "../../../libs/buzzer.h"
#include "../../../lcd/marlinui.h"
#include "../../../module/motion.h"
#include "../../../module/stepper.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../../core/debug_out.h"
// Save 130 bytes with non-duplication of PSTR
inline void echo_not_entered(const char c) { SERIAL_CHAR(c); SERIAL_ECHOLNPGM(" not entered."); }
/**
* G29: Mesh-based Z probe, probes a grid and produces a
* mesh to compensate for variable bed height
*
* Parameters With MESH_BED_LEVELING:
*
* S0 Report the current mesh values
* S1 Start probing mesh points
* S2 Probe the next mesh point
* S3 In Jn Zn.nn Manually modify a single point
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
* S5 Reset and disable mesh
*/
void GcodeSuite::G29() {
DEBUG_SECTION(log_G29, "G29", true);
// G29 Q is also available if debugging
#if ENABLED(DEBUG_LEVELING_FEATURE)
const bool seenQ = parser.seen_test('Q');
if (seenQ || DEBUGGING(LEVELING)) {
log_machine_info();
if (seenQ) return;
}
#endif
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_PROBE));
static int mbl_probe_index = -1;
MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
if (!WITHIN(state, 0, 5)) {
SERIAL_ECHOLNPGM("S out of range (0-5).");
return;
}
int8_t ix, iy;
ix = iy = 0;
switch (state) {
case MeshReport:
SERIAL_ECHOPGM("Mesh Bed Leveling ");
if (leveling_is_valid()) {
serialprintln_onoff(planner.leveling_active);
mbl.report_mesh();
}
else
SERIAL_ECHOLNPGM("has no data.");
break;
case MeshStart:
mbl.reset();
mbl_probe_index = 0;
if (!ui.wait_for_move) {
queue.inject_P(parser.seen_test('N') ? PSTR("G28" TERN(CAN_SET_LEVELING_AFTER_G28, "L0", "") "\nG29S2") : PSTR("G29S2"));
TERN_(EXTENSIBLE_UI, ExtUI::onMeshLevelingStart());
return;
}
state = MeshNext;
case MeshNext:
if (mbl_probe_index < 0) {
SERIAL_ECHOLNPGM("Start mesh probing with \"G29 S1\" first.");
return;
}
// For each G29 S2...
if (mbl_probe_index == 0) {
// Move close to the bed before the first point
do_blocking_move_to_z(0.4f
#ifdef MANUAL_PROBE_START_Z
+ (MANUAL_PROBE_START_Z) - 0.4f
#endif
);
}
else {
// Save Z for the previous mesh position
mbl.set_zigzag_z(mbl_probe_index - 1, current_position.z);
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, current_position.z));
SET_SOFT_ENDSTOP_LOOSE(false);
}
// If there's another point to sample, move there with optional lift.
if (mbl_probe_index < (GRID_MAX_POINTS)) {
// Disable software endstops to allow manual adjustment
// If G29 is left hanging without completion they won't be re-enabled!
SET_SOFT_ENDSTOP_LOOSE(true);
mbl.zigzag(mbl_probe_index++, ix, iy);
_manual_goto_xy({ mbl.index_to_xpos[ix], mbl.index_to_ypos[iy] });
}
else {
// Move to the after probing position
current_position.z = (
#ifdef Z_AFTER_PROBING
Z_AFTER_PROBING
#else
Z_CLEARANCE_BETWEEN_MANUAL_PROBES
#endif
);
line_to_current_position();
planner.synchronize();
// After recording the last point, activate home and activate
mbl_probe_index = -1;
SERIAL_ECHOLNPGM("Mesh probing done.");
TERN_(HAS_STATUS_MESSAGE, ui.set_status(GET_TEXT(MSG_MESH_DONE)));
BUZZ(100, 659);
BUZZ(100, 698);
home_all_axes();
set_bed_leveling_enabled(true);
#if ENABLED(MESH_G28_REST_ORIGIN)
current_position.z = 0;
line_to_current_position(homing_feedrate(Z_AXIS));
planner.synchronize();
#endif
TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
}
break;
case MeshSet:
if (parser.seenval('I')) {
ix = parser.value_int();
if (!WITHIN(ix, 0, (GRID_MAX_POINTS_X) - 1)) {
SERIAL_ECHOLNPAIR("I out of range (0-", (GRID_MAX_POINTS_X) - 1, ")");
return;
}
}
else
return echo_not_entered('J');
if (parser.seenval('J')) {
iy = parser.value_int();
if (!WITHIN(iy, 0, (GRID_MAX_POINTS_Y) - 1)) {
SERIAL_ECHOLNPAIR("J out of range (0-", (GRID_MAX_POINTS_Y) - 1, ")");
return;
}
}
else
return echo_not_entered('J');
if (parser.seenval('Z')) {
mbl.z_values[ix][iy] = parser.value_linear_units();
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, mbl.z_values[ix][iy]));
}
else
return echo_not_entered('Z');
break;
case MeshSetZOffset:
if (parser.seenval('Z'))
mbl.z_offset = parser.value_linear_units();
else
return echo_not_entered('Z');
break;
case MeshReset:
reset_bed_level();
break;
} // switch(state)
if (state == MeshNext) {
SERIAL_ECHOLNPAIR("MBL G29 point ", _MIN(mbl_probe_index, GRID_MAX_POINTS), " of ", GRID_MAX_POINTS);
if (mbl_probe_index > 0) TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), _MIN(mbl_probe_index, GRID_MAX_POINTS), int(GRID_MAX_POINTS)));
}
report_current_position();
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_IDLE));
}
#endif // MESH_BED_LEVELING

View File

@@ -0,0 +1,59 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* M421.cpp - Mesh Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(MESH_BED_LEVELING)
#include "../../gcode.h"
#include "../../../module/motion.h"
#include "../../../feature/bedlevel/mbl/mesh_bed_leveling.h"
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
*
* Usage:
* M421 X<linear> Y<linear> Z<linear>
* M421 X<linear> Y<linear> Q<offset>
* M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset>
*/
void GcodeSuite::M421() {
const bool hasX = parser.seen('X'), hasI = parser.seen('I');
const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ))
SERIAL_ERROR_MSG(STR_ERR_M421_PARAMETERS);
else if (ix < 0 || iy < 0)
SERIAL_ERROR_MSG(STR_ERR_MESH_XY);
else
mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
}
#endif // MESH_BED_LEVELING

View File

@@ -0,0 +1,47 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* G29.cpp - Unified Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../../gcode.h"
#include "../../../feature/bedlevel/bedlevel.h"
#if ENABLED(FULL_REPORT_TO_HOST_FEATURE)
#include "../../../module/motion.h"
#endif
void GcodeSuite::G29() {
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_PROBE));
ubl.G29();
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_IDLE));
}
#endif // AUTO_BED_LEVELING_UBL

View File

@@ -0,0 +1,73 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* M421.cpp - Unified Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../../gcode.h"
#include "../../../feature/bedlevel/bedlevel.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#endif
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
*
* Usage:
* M421 I<xindex> J<yindex> Z<linear> : Set the Mesh Point IJ to the Z value
* M421 I<xindex> J<yindex> Q<offset> : Add the Q value to the Mesh Point IJ
* M421 I<xindex> J<yindex> N : Set the Mesh Point IJ to NAN (not set)
* M421 C Z<linear> : Set the closest Mesh Point to the Z value
* M421 C Q<offset> : Add the Q value to the closest Mesh Point
*/
void GcodeSuite::M421() {
xy_int8_t ij = { int8_t(parser.intval('I', -1)), int8_t(parser.intval('J', -1)) };
const bool hasI = ij.x >= 0,
hasJ = ij.y >= 0,
hasC = parser.seen_test('C'),
hasN = parser.seen_test('N'),
hasZ = parser.seen('Z'),
hasQ = !hasZ && parser.seen('Q');
if (hasC) ij = ubl.find_closest_mesh_point_of_type(CLOSEST, current_position);
// Test for bad parameter combinations
if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ || hasN))
SERIAL_ERROR_MSG(STR_ERR_M421_PARAMETERS);
// Test for I J out of range
else if (!WITHIN(ij.x, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(ij.y, 0, GRID_MAX_POINTS_Y - 1))
SERIAL_ERROR_MSG(STR_ERR_MESH_XY);
else {
float &zval = ubl.z_values[ij.x][ij.y]; // Altering this Mesh Point
zval = hasN ? NAN : parser.value_linear_units() + (hasQ ? zval : 0); // N=NAN, Z=NEWVAL, or Q=ADDVAL
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ij.x, ij.y, zval)); // Ping ExtUI in case it's showing the mesh
}
}
#endif // AUTO_BED_LEVELING_UBL

View File

@@ -0,0 +1,551 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#include "../gcode.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#if HAS_MULTI_HOTEND
#include "../../module/tool_change.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(SENSORLESS_HOMING)
#include "../../feature/tmc_util.h"
#endif
#include "../../module/probe.h"
#if ENABLED(BLTOUCH)
#include "../../feature/bltouch.h"
#endif
#include "../../lcd/marlinui.h"
#if ENABLED(DWIN_CREALITY_LCD)
#include "../../lcd/e3v2/creality/dwin.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../../lcd/extui/ui_api.h"
#endif
#if HAS_L64XX // set L6470 absolute position registers to counts
#include "../../libs/L64XX/L64XX_Marlin.h"
#endif
#if ENABLED(LASER_MOVE_G28_OFF)
#include "../../feature/spindle_laser.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
#if ENABLED(QUICK_HOME)
static void quick_home_xy() {
// Pretend the current position is 0,0
current_position.set(0.0, 0.0);
sync_plan_position();
const int x_axis_home_dir = TOOL_X_HOME_DIR(active_extruder);
const float mlx = max_length(X_AXIS),
mly = max_length(Y_AXIS),
mlratio = mlx > mly ? mly / mlx : mlx / mly,
fr_mm_s = _MIN(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
#if ENABLED(SENSORLESS_HOMING)
sensorless_t stealth_states {
tmc_enable_stallguard(stepperX)
, tmc_enable_stallguard(stepperY)
, false
, false
#if AXIS_HAS_STALLGUARD(X2)
|| tmc_enable_stallguard(stepperX2)
#endif
, false
#if AXIS_HAS_STALLGUARD(Y2)
|| tmc_enable_stallguard(stepperY2)
#endif
};
#endif
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * Y_HOME_DIR, fr_mm_s);
endstops.validate_homing_move();
current_position.set(0.0, 0.0);
#if ENABLED(SENSORLESS_HOMING) && DISABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
tmc_disable_stallguard(stepperX, stealth_states.x);
tmc_disable_stallguard(stepperY, stealth_states.y);
#if AXIS_HAS_STALLGUARD(X2)
tmc_disable_stallguard(stepperX2, stealth_states.x2);
#endif
#if AXIS_HAS_STALLGUARD(Y2)
tmc_disable_stallguard(stepperY2, stealth_states.y2);
#endif
#endif
}
#endif // QUICK_HOME
#if ENABLED(Z_SAFE_HOMING)
inline void home_z_safely() {
DEBUG_SECTION(log_G28, "home_z_safely", DEBUGGING(LEVELING));
// Disallow Z homing if X or Y homing is needed
if (homing_needed_error(_BV(X_AXIS) | _BV(Y_AXIS))) return;
sync_plan_position();
/**
* Move the Z probe (or just the nozzle) to the safe homing point
* (Z is already at the right height)
*/
constexpr xy_float_t safe_homing_xy = { Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT };
#if HAS_HOME_OFFSET
xy_float_t okay_homing_xy = safe_homing_xy;
okay_homing_xy -= home_offset;
#else
constexpr xy_float_t okay_homing_xy = safe_homing_xy;
#endif
destination.set(okay_homing_xy, current_position.z);
TERN_(HOMING_Z_WITH_PROBE, destination -= probe.offset_xy);
if (position_is_reachable(destination)) {
if (DEBUGGING(LEVELING)) DEBUG_POS("home_z_safely", destination);
// Free the active extruder for movement
TERN_(DUAL_X_CARRIAGE, idex_set_parked(false));
TERN_(SENSORLESS_HOMING, safe_delay(500)); // Short delay needed to settle
do_blocking_move_to_xy(destination);
homeaxis(Z_AXIS);
}
else {
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_MSG(STR_ZPROBE_OUT_SER);
}
}
#endif // Z_SAFE_HOMING
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
motion_state_t begin_slow_homing() {
motion_state_t motion_state{0};
motion_state.acceleration.set(planner.settings.max_acceleration_mm_per_s2[X_AXIS],
planner.settings.max_acceleration_mm_per_s2[Y_AXIS]
OPTARG(DELTA, planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
);
planner.settings.max_acceleration_mm_per_s2[X_AXIS] = 100;
planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = 100;
TERN_(DELTA, planner.settings.max_acceleration_mm_per_s2[Z_AXIS] = 100);
#if HAS_CLASSIC_JERK
motion_state.jerk_state = planner.max_jerk;
planner.max_jerk.set(0, 0 OPTARG(DELTA, 0));
#endif
planner.reset_acceleration_rates();
return motion_state;
}
void end_slow_homing(const motion_state_t &motion_state) {
planner.settings.max_acceleration_mm_per_s2[X_AXIS] = motion_state.acceleration.x;
planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = motion_state.acceleration.y;
TERN_(DELTA, planner.settings.max_acceleration_mm_per_s2[Z_AXIS] = motion_state.acceleration.z);
TERN_(HAS_CLASSIC_JERK, planner.max_jerk = motion_state.jerk_state);
planner.reset_acceleration_rates();
}
#endif // IMPROVE_HOMING_RELIABILITY
/**
* G28: Home all axes according to settings
*
* Parameters
*
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
*
* L<bool> Force leveling state ON (if possible) or OFF after homing (Requires RESTORE_LEVELING_AFTER_G28 or ENABLE_LEVELING_AFTER_G28)
* O Home only if the position is not known and trusted
* R<linear> Raise by n mm/inches before homing
*
* Cartesian/SCARA parameters
*
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
*/
void GcodeSuite::G28() {
DEBUG_SECTION(log_G28, "G28", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) log_machine_info();
TERN_(LASER_MOVE_G28_OFF, cutter.set_inline_enabled(false)); // turn off laser
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_HOMING));
#if ENABLED(DUAL_X_CARRIAGE)
bool IDEX_saved_duplication_state = extruder_duplication_enabled;
DualXMode IDEX_saved_mode = dual_x_carriage_mode;
#endif
#if ENABLED(MARLIN_DEV_MODE)
if (parser.seen_test('S')) {
LOOP_LINEAR_AXES(a) set_axis_is_at_home((AxisEnum)a);
sync_plan_position();
SERIAL_ECHOLNPGM("Simulated Homing");
report_current_position();
return;
}
#endif
// Home (O)nly if position is unknown
if (!axes_should_home() && parser.seen_test('O')) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> homing not needed, skip");
return;
}
TERN_(DWIN_CREALITY_LCD, DWIN_StartHoming());
TERN_(EXTENSIBLE_UI, ExtUI::onHomingStart());
planner.synchronize(); // Wait for planner moves to finish!
SET_SOFT_ENDSTOP_LOOSE(false); // Reset a leftover 'loose' motion state
// Disable the leveling matrix before homing
#if CAN_SET_LEVELING_AFTER_G28
const bool leveling_restore_state = parser.boolval('L', TERN1(RESTORE_LEVELING_AFTER_G28, planner.leveling_active));
#endif
// Cancel any prior G29 session
TERN_(PROBE_MANUALLY, g29_in_progress = false);
// Disable leveling before homing
TERN_(HAS_LEVELING, set_bed_leveling_enabled(false));
// Reset to the XY plane
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
// Count this command as movement / activity
reset_stepper_timeout();
#define HAS_CURRENT_HOME(N) (defined(N##_CURRENT_HOME) && N##_CURRENT_HOME != N##_CURRENT)
#if HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(X2) || HAS_CURRENT_HOME(Y) || HAS_CURRENT_HOME(Y2) || (ENABLED(DELTA) && HAS_CURRENT_HOME(Z))
#define HAS_HOMING_CURRENT 1
#endif
#if HAS_HOMING_CURRENT
auto debug_current = [](PGM_P const s, const int16_t a, const int16_t b) {
DEBUG_ECHOPGM_P(s); DEBUG_ECHOLNPAIR(" current: ", a, " -> ", b);
};
#if HAS_CURRENT_HOME(X)
const int16_t tmc_save_current_X = stepperX.getMilliamps();
stepperX.rms_current(X_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(PSTR("X"), tmc_save_current_X, X_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(X2)
const int16_t tmc_save_current_X2 = stepperX2.getMilliamps();
stepperX2.rms_current(X2_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(PSTR("X2"), tmc_save_current_X2, X2_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(Y)
const int16_t tmc_save_current_Y = stepperY.getMilliamps();
stepperY.rms_current(Y_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(PSTR("Y"), tmc_save_current_Y, Y_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(Y2)
const int16_t tmc_save_current_Y2 = stepperY2.getMilliamps();
stepperY2.rms_current(Y2_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(PSTR("Y2"), tmc_save_current_Y2, Y2_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(Z) && ENABLED(DELTA)
const int16_t tmc_save_current_Z = stepperZ.getMilliamps();
stepperZ.rms_current(Z_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(PSTR("Z"), tmc_save_current_Z, Z_CURRENT_HOME);
#endif
#endif
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
motion_state_t saved_motion_state = begin_slow_homing();
#endif
// Always home with tool 0 active
#if HAS_MULTI_HOTEND
#if DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE)
const uint8_t old_tool_index = active_extruder;
#endif
// PARKING_EXTRUDER homing requires different handling of movement / solenoid activation, depending on the side of homing
#if ENABLED(PARKING_EXTRUDER)
const bool pe_final_change_must_unpark = parking_extruder_unpark_after_homing(old_tool_index, X_HOME_DIR + 1 == old_tool_index * 2);
#endif
tool_change(0, true);
#endif
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
remember_feedrate_scaling_off();
endstops.enable(true); // Enable endstops for next homing move
#if ENABLED(DELTA)
constexpr bool doZ = true; // for NANODLP_Z_SYNC if your DLP is on a DELTA
home_delta();
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
#elif ENABLED(AXEL_TPARA)
constexpr bool doZ = true; // for NANODLP_Z_SYNC if your DLP is on a TPARA
home_TPARA();
#else
#define _UNSAFE(A) (homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(A##_AXIS))))
const bool homeZ = TERN0(HAS_Z_AXIS, parser.seen_test('Z')),
LINEAR_AXIS_LIST( // Other axes should be homed before Z safe-homing
needX = _UNSAFE(X), needY = _UNSAFE(Y), needZ = false, // UNUSED
needI = _UNSAFE(I), needJ = _UNSAFE(J), needK = _UNSAFE(K)
),
LINEAR_AXIS_LIST( // Home each axis if needed or flagged
homeX = needX || parser.seen_test('X'),
homeY = needY || parser.seen_test('Y'),
homeZZ = homeZ,
homeI = needI || parser.seen_test(AXIS4_NAME), homeJ = needJ || parser.seen_test(AXIS5_NAME), homeK = needK || parser.seen_test(AXIS6_NAME),
),
home_all = LINEAR_AXIS_GANG( // Home-all if all or none are flagged
homeX == homeX, && homeY == homeX, && homeZ == homeX,
&& homeI == homeX, && homeJ == homeX, && homeK == homeX
),
LINEAR_AXIS_LIST(
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ,
doI = home_all || homeI, doJ = home_all || homeJ, doK = home_all || homeK
);
#if HAS_Z_AXIS
UNUSED(needZ); UNUSED(homeZZ);
#else
constexpr bool doZ = false;
#endif
TERN_(HOME_Z_FIRST, if (doZ) homeaxis(Z_AXIS));
const float z_homing_height = parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT;
if (z_homing_height && (LINEAR_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK))) {
// Raise Z before homing any other axes and z is not already high enough (never lower z)
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Raise Z (before homing) by ", z_homing_height);
do_z_clearance(z_homing_height);
TERN_(BLTOUCH, bltouch.init());
}
// Diagonal move first if both are homing
TERN_(QUICK_HOME, if (doX && doY) quick_home_xy());
// Home Y (before X)
if (ENABLED(HOME_Y_BEFORE_X) && (doY || TERN0(CODEPENDENT_XY_HOMING, doX)))
homeaxis(Y_AXIS);
// Home X
if (doX || (doY && ENABLED(CODEPENDENT_XY_HOMING) && DISABLED(HOME_Y_BEFORE_X))) {
#if ENABLED(DUAL_X_CARRIAGE)
// Always home the 2nd (right) extruder first
active_extruder = 1;
homeaxis(X_AXIS);
// Remember this extruder's position for later tool change
inactive_extruder_x = current_position.x;
// Home the 1st (left) extruder
active_extruder = 0;
homeaxis(X_AXIS);
// Consider the active extruder to be in its "parked" position
idex_set_parked();
#else
homeaxis(X_AXIS);
#endif
}
// Home Y (after X)
if (DISABLED(HOME_Y_BEFORE_X) && doY)
homeaxis(Y_AXIS);
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
// Home Z last if homing towards the bed
#if HAS_Z_AXIS && DISABLED(HOME_Z_FIRST)
if (doZ) {
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
stepper.set_all_z_lock(false);
stepper.set_separate_multi_axis(false);
#endif
TERN(Z_SAFE_HOMING, home_z_safely(), homeaxis(Z_AXIS));
probe.move_z_after_homing();
}
#endif
#if LINEAR_AXES >= 4
if (doI) homeaxis(I_AXIS);
#endif
#if LINEAR_AXES >= 5
if (doJ) homeaxis(J_AXIS);
#endif
#if LINEAR_AXES >= 6
if (doK) homeaxis(K_AXIS);
#endif
sync_plan_position();
#endif
/**
* Preserve DXC mode across a G28 for IDEX printers in DXC_DUPLICATION_MODE.
* This is important because it lets a user use the LCD Panel to set an IDEX Duplication mode, and
* then print a standard GCode file that contains a single print that does a G28 and has no other
* IDEX specific commands in it.
*/
#if ENABLED(DUAL_X_CARRIAGE)
if (idex_is_duplicating()) {
TERN_(IMPROVE_HOMING_RELIABILITY, saved_motion_state = begin_slow_homing());
// Always home the 2nd (right) extruder first
active_extruder = 1;
homeaxis(X_AXIS);
// Remember this extruder's position for later tool change
inactive_extruder_x = current_position.x;
// Home the 1st (left) extruder
active_extruder = 0;
homeaxis(X_AXIS);
// Consider the active extruder to be parked
idex_set_parked();
dual_x_carriage_mode = IDEX_saved_mode;
set_duplication_enabled(IDEX_saved_duplication_state);
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
}
#endif // DUAL_X_CARRIAGE
endstops.not_homing();
// Clear endstop state for polled stallGuard endstops
TERN_(SPI_ENDSTOPS, endstops.clear_endstop_state());
// Move to a height where we can use the full xy-area
TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
TERN_(CAN_SET_LEVELING_AFTER_G28, if (leveling_restore_state) set_bed_leveling_enabled());
restore_feedrate_and_scaling();
// Restore the active tool after homing
#if HAS_MULTI_HOTEND && (DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE))
tool_change(old_tool_index, TERN(PARKING_EXTRUDER, !pe_final_change_must_unpark, DISABLED(DUAL_X_CARRIAGE))); // Do move if one of these
#endif
#if HAS_HOMING_CURRENT
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Restore driver current...");
#if HAS_CURRENT_HOME(X)
stepperX.rms_current(tmc_save_current_X);
#endif
#if HAS_CURRENT_HOME(X2)
stepperX2.rms_current(tmc_save_current_X2);
#endif
#if HAS_CURRENT_HOME(Y)
stepperY.rms_current(tmc_save_current_Y);
#endif
#if HAS_CURRENT_HOME(Y2)
stepperY2.rms_current(tmc_save_current_Y2);
#endif
#if HAS_CURRENT_HOME(Z) && ENABLED(DELTA)
stepperZ.rms_current(tmc_save_current_Z);
#endif
#if HAS_CURRENT_HOME(I)
stepperI.rms_current(tmc_save_current_I);
#endif
#if HAS_CURRENT_HOME(J)
stepperJ.rms_current(tmc_save_current_J);
#endif
#if HAS_CURRENT_HOME(K)
stepperK.rms_current(tmc_save_current_K);
#endif
#endif // HAS_HOMING_CURRENT
ui.refresh();
TERN_(DWIN_CREALITY_LCD, DWIN_CompletedHoming());
TERN_(EXTENSIBLE_UI, ExtUI::onHomingComplete());
report_current_position();
if (ENABLED(NANODLP_Z_SYNC) && (doZ || ENABLED(NANODLP_ALL_AXIS)))
SERIAL_ECHOLNPGM(STR_Z_MOVE_COMP);
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_IDLE));
#if HAS_L64XX
// Set L6470 absolute position registers to counts
// constexpr *might* move this to PROGMEM.
// If not, this will need a PROGMEM directive and an accessor.
#define _EN_ITEM(N) , E_AXIS
static constexpr AxisEnum L64XX_axis_xref[MAX_L64XX] = {
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS),
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS, Z_AXIS
REPEAT(E_STEPPERS, _EN_ITEM)
};
#undef _EN_ITEM
for (uint8_t j = 1; j <= L64XX::chain[0]; j++) {
const uint8_t cv = L64XX::chain[j];
L64xxManager.set_param((L64XX_axis_t)cv, L6470_ABS_POS, stepper.position(L64XX_axis_xref[cv]));
}
#endif
}

View File

@@ -0,0 +1,668 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(DELTA_AUTO_CALIBRATION)
#include "../gcode.h"
#include "../../module/delta.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#include "../../lcd/marlinui.h"
#if HAS_BED_PROBE
#include "../../module/probe.h"
#endif
#if HAS_MULTI_HOTEND
#include "../../module/tool_change.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
_4P_STEP = _7P_STEP * 2, // 4-point step
NPP = _7P_STEP * 6; // number of calibration points on the radius
enum CalEnum : char { // the 7 main calibration points - add definitions if needed
CEN = 0,
__A = 1,
_AB = __A + _7P_STEP,
__B = _AB + _7P_STEP,
_BC = __B + _7P_STEP,
__C = _BC + _7P_STEP,
_CA = __C + _7P_STEP,
};
#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
#if HAS_MULTI_HOTEND
const uint8_t old_tool_index = active_extruder;
#endif
float lcd_probe_pt(const xy_pos_t &xy);
void ac_home() {
endstops.enable(true);
TERN_(SENSORLESS_HOMING, probe.set_homing_current(true));
home_delta();
TERN_(SENSORLESS_HOMING, probe.set_homing_current(false));
endstops.not_homing();
}
void ac_setup(const bool reset_bed) {
TERN_(HAS_MULTI_HOTEND, tool_change(0, true));
planner.synchronize();
remember_feedrate_scaling_off();
#if HAS_LEVELING
if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
#endif
}
void ac_cleanup(TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index)) {
TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
TERN_(HAS_BED_PROBE, probe.stow());
restore_feedrate_and_scaling();
TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, true));
}
void print_signed_float(PGM_P const prefix, const_float_t f) {
SERIAL_ECHOPGM(" ");
SERIAL_ECHOPGM_P(prefix);
SERIAL_CHAR(':');
if (f >= 0) SERIAL_CHAR('+');
SERIAL_ECHO_F(f, 2);
}
/**
* - Print the delta settings
*/
static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
SERIAL_ECHOPAIR(".Height:", delta_height);
if (end_stops) {
print_signed_float(PSTR("Ex"), delta_endstop_adj.a);
print_signed_float(PSTR("Ey"), delta_endstop_adj.b);
print_signed_float(PSTR("Ez"), delta_endstop_adj.c);
}
if (end_stops && tower_angles) {
SERIAL_ECHOPAIR(" Radius:", delta_radius);
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_ECHO_SP(13);
}
if (tower_angles) {
print_signed_float(PSTR("Tx"), delta_tower_angle_trim.a);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim.b);
print_signed_float(PSTR("Tz"), delta_tower_angle_trim.c);
}
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
SERIAL_ECHOPAIR(" Radius:", delta_radius);
}
SERIAL_EOL();
}
/**
* - Print the probe results
*/
static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
SERIAL_ECHOPGM(". ");
print_signed_float(PSTR("c"), z_pt[CEN]);
if (tower_points) {
print_signed_float(PSTR(" x"), z_pt[__A]);
print_signed_float(PSTR(" y"), z_pt[__B]);
print_signed_float(PSTR(" z"), z_pt[__C]);
}
if (tower_points && opposite_points) {
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_ECHO_SP(13);
}
if (opposite_points) {
print_signed_float(PSTR("yz"), z_pt[_BC]);
print_signed_float(PSTR("zx"), z_pt[_CA]);
print_signed_float(PSTR("xy"), z_pt[_AB]);
}
SERIAL_EOL();
}
/**
* - Calculate the standard deviation from the zero plane
*/
static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
if (!_0p_cal) {
float S2 = sq(z_pt[CEN]);
int16_t N = 1;
if (!_1p_cal) { // std dev from zero plane
LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
S2 += sq(z_pt[rad]);
N++;
}
return LROUND(SQRT(S2 / N) * 1000.0f) / 1000.0f + 0.00001f;
}
}
return 0.00001f;
}
/**
* - Probe a point
*/
static float calibration_probe(const xy_pos_t &xy, const bool stow) {
#if HAS_BED_PROBE
return probe.probe_at_point(xy, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, true, false);
#else
UNUSED(stow);
return lcd_probe_pt(xy);
#endif
}
/**
* - Probe a grid
*/
static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3,
_7p_no_intermediates = probe_points == 3,
_7p_1_intermediates = probe_points == 4,
_7p_2_intermediates = probe_points == 5,
_7p_4_intermediates = probe_points == 6,
_7p_6_intermediates = probe_points == 7,
_7p_8_intermediates = probe_points == 8,
_7p_11_intermediates = probe_points == 9,
_7p_14_intermediates = probe_points == 10,
_7p_intermed_points = probe_points >= 4,
_7p_6_center = probe_points >= 5 && probe_points <= 7,
_7p_9_center = probe_points >= 8;
LOOP_CAL_ALL(rad) z_pt[rad] = 0.0f;
if (!_0p_calibration) {
const float dcr = delta_calibration_radius();
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
const xy_pos_t center{0};
z_pt[CEN] += calibration_probe(center, stow_after_each);
if (isnan(z_pt[CEN])) return false;
}
if (_7p_calibration) { // probe extra center points
const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0f : _7p_6_center ? float(_CA) : float(__C),
steps = _7p_9_center ? _4P_STEP / 3.0f : _7p_6_center ? _7P_STEP : _4P_STEP;
I_LOOP_CAL_PT(rad, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = dcr * 0.1;
const xy_pos_t vec = { cos(a), sin(a) };
z_pt[CEN] += calibration_probe(vec * r, stow_after_each);
if (isnan(z_pt[CEN])) return false;
}
z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
}
if (!_1p_calibration) { // probe the radius
const CalEnum start = _4p_opposite_points ? _AB : __A;
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0f : // 15r * 6 + 10c = 100
_7p_11_intermediates ? _7P_STEP / 12.0f : // 12r * 6 + 9c = 81
_7p_8_intermediates ? _7P_STEP / 9.0f : // 9r * 6 + 10c = 64
_7p_6_intermediates ? _7P_STEP / 7.0f : // 7r * 6 + 7c = 49
_7p_4_intermediates ? _7P_STEP / 5.0f : // 5r * 6 + 6c = 36
_7p_2_intermediates ? _7P_STEP / 3.0f : // 3r * 6 + 7c = 25
_7p_1_intermediates ? _7P_STEP / 2.0f : // 2r * 6 + 4c = 16
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
_4P_STEP; // .5r * 6 + 1c = 4
bool zig_zag = true;
F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
const int8_t offset = _7p_9_center ? 2 : 0;
for (int8_t circle = 0; circle <= offset; circle++) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = dcr * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
interpol = FMOD(rad, 1);
const xy_pos_t vec = { cos(a), sin(a) };
const float z_temp = calibration_probe(vec * r, stow_after_each);
if (isnan(z_temp)) return false;
// split probe point to neighbouring calibration points
z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
}
zig_zag = !zig_zag;
}
if (_7p_intermed_points)
LOOP_CAL_RAD(rad)
z_pt[rad] /= _7P_STEP / steps;
do_blocking_move_to_xy(0.0f, 0.0f);
}
}
return true;
}
/**
* kinematics routines and auto tune matrix scaling parameters:
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - formulae for approximative forward kinematics in the end-stop displacement matrix
* - definition of the matrix scaling parameters
*/
static void reverse_kinematics_probe_points(float z_pt[NPP + 1], abc_float_t mm_at_pt_axis[NPP + 1]) {
xyz_pos_t pos{0};
const float dcr = delta_calibration_radius();
LOOP_CAL_ALL(rad) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = (rad == CEN ? 0.0f : dcr);
pos.set(cos(a) * r, sin(a) * r, z_pt[rad]);
inverse_kinematics(pos);
mm_at_pt_axis[rad] = delta;
}
}
static void forward_kinematics_probe_points(abc_float_t mm_at_pt_axis[NPP + 1], float z_pt[NPP + 1]) {
const float r_quot = delta_calibration_radius() / delta_radius;
#define ZPP(N,I,A) (((1.0f + r_quot * (N)) / 3.0f) * mm_at_pt_axis[I].A)
#define Z00(I, A) ZPP( 0, I, A)
#define Zp1(I, A) ZPP(+1, I, A)
#define Zm1(I, A) ZPP(-1, I, A)
#define Zp2(I, A) ZPP(+2, I, A)
#define Zm2(I, A) ZPP(-2, I, A)
z_pt[CEN] = Z00(CEN, a) + Z00(CEN, b) + Z00(CEN, c);
z_pt[__A] = Zp2(__A, a) + Zm1(__A, b) + Zm1(__A, c);
z_pt[__B] = Zm1(__B, a) + Zp2(__B, b) + Zm1(__B, c);
z_pt[__C] = Zm1(__C, a) + Zm1(__C, b) + Zp2(__C, c);
z_pt[_BC] = Zm2(_BC, a) + Zp1(_BC, b) + Zp1(_BC, c);
z_pt[_CA] = Zp1(_CA, a) + Zm2(_CA, b) + Zp1(_CA, c);
z_pt[_AB] = Zp1(_AB, a) + Zp1(_AB, b) + Zm2(_AB, c);
}
static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], abc_float_t delta_e, const float delta_r, abc_float_t delta_t) {
const float z_center = z_pt[CEN];
abc_float_t diff_mm_at_pt_axis[NPP + 1], new_mm_at_pt_axis[NPP + 1];
reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
delta_radius += delta_r;
delta_tower_angle_trim += delta_t;
recalc_delta_settings();
reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad] -= new_mm_at_pt_axis[rad] + delta_e;
forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
z_pt[CEN] = z_center;
delta_radius -= delta_r;
delta_tower_angle_trim -= delta_t;
recalc_delta_settings();
}
static float auto_tune_h() {
const float r_quot = delta_calibration_radius() / delta_radius;
return RECIPROCAL(r_quot / (2.0f / 3.0f)); // (2/3)/CR
}
static float auto_tune_r() {
constexpr float diff = 0.01f, delta_r = diff;
float r_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0f;
r_fac = diff / r_fac / 3.0f; // 1/(3*delta_Z)
return r_fac;
}
static float auto_tune_a() {
constexpr float diff = 0.01f, delta_r = 0.0f;
float a_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
delta_t.reset();
LOOP_LINEAR_AXES(axis) {
delta_t[axis] = diff;
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
delta_t[axis] = 0;
a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0f;
a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0f;
}
a_fac = diff / a_fac / 3.0f; // 1/(3*delta_Z)
return a_fac;
}
/**
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, z_offset, endstops, delta radius, and tower angles.
*
* Parameters:
*
* Pn Number of probe points:
* P0 Normalizes calibration.
* P1 Calibrates height only with center probe.
* P2 Probe center and towers. Calibrate height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Calibrate all.
* P4-P10 Probe all positions at different intermediate locations and average them.
*
* T Don't calibrate tower angle corrections
*
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
*
* Fn Force to run at least n iterations and take the best result
*
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report start and end settings only
* V2 Report settings at each iteration
* V3 Report settings and probe results
*
* E Engage the probe for each point
*
* With SENSORLESS_PROBING:
* Use these flags to calibrate stall sensitivity: (e.g., `G33 P1 Y Z` to calibrate X only.)
* X Don't activate stallguard on X.
* Y Don't activate stallguard on Y.
* Z Don't activate stallguard on Z.
*/
void GcodeSuite::G33() {
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_PROBE));
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, 0, 10)) {
SERIAL_ECHOLNPGM("?(P)oints implausible (0-10).");
return;
}
const bool towers_set = !parser.seen_test('T');
const float calibration_precision = parser.floatval('C', 0.0f);
if (calibration_precision < 0) {
SERIAL_ECHOLNPGM("?(C)alibration precision implausible (>=0).");
return;
}
const int8_t force_iterations = parser.intval('F', 0);
if (!WITHIN(force_iterations, 0, 30)) {
SERIAL_ECHOLNPGM("?(F)orce iteration implausible (0-30).");
return;
}
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 3)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-3).");
return;
}
const bool stow_after_each = parser.seen_test('E');
#if ENABLED(SENSORLESS_PROBING)
probe.test_sensitivity.x = !parser.seen_test('X');
TERN_(HAS_Y_AXIS, probe.test_sensitivity.y = !parser.seen_test('Y'));
TERN_(HAS_Z_AXIS, probe.test_sensitivity.z = !parser.seen_test('Z'));
#endif
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_9_center = probe_points >= 8,
_tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
_opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
_endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
_angle_results = probe_points >= 3 && towers_set;
int8_t iterations = 0;
float test_precision,
zero_std_dev = (verbose_level ? 999.0f : 0.0f), // 0.0 in dry-run mode : forced end
zero_std_dev_min = zero_std_dev,
zero_std_dev_old = zero_std_dev,
h_factor, r_factor, a_factor,
r_old = delta_radius,
h_old = delta_height;
abc_pos_t e_old = delta_endstop_adj, a_old = delta_tower_angle_trim;
SERIAL_ECHOLNPGM("G33 Auto Calibrate");
const float dcr = delta_calibration_radius();
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
LOOP_CAL_RAD(axis) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1));
if (!position_is_reachable(cos(a) * dcr, sin(a) * dcr)) {
SERIAL_ECHOLNPGM("?Bed calibration radius implausible.");
return;
}
}
}
// Report settings
PGM_P const checkingac = PSTR("Checking... AC");
SERIAL_ECHOPGM_P(checkingac);
if (verbose_level == 0) SERIAL_ECHOPGM(" (DRY-RUN)");
SERIAL_EOL();
ui.set_status_P(checkingac);
print_calibration_settings(_endstop_results, _angle_results);
ac_setup(!_0p_calibration && !_1p_calibration);
if (!_0p_calibration) ac_home();
do { // start iterations
float z_at_pt[NPP + 1] = { 0.0f };
test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) / 2.0f : zero_std_dev;
iterations++;
// Probe the points
zero_std_dev_old = zero_std_dev;
if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) {
SERIAL_ECHOLNPGM("Correct delta settings with M665 and M666");
return ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index));
}
zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
// Solve matrices
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
#if !HAS_BED_PROBE
test_precision = 0.0f; // forced end
#endif
if (zero_std_dev < zero_std_dev_min) {
// set roll-back point
e_old = delta_endstop_adj;
r_old = delta_radius;
h_old = delta_height;
a_old = delta_tower_angle_trim;
}
abc_float_t e_delta = { 0.0f }, t_delta = { 0.0f };
float r_delta = 0.0f;
/**
* convergence matrices:
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - definition of the matrix scaling parameters
* - matrices for 4 and 7 point calibration
*/
#define ZP(N,I) ((N) * z_at_pt[I] / 4.0f) // 4.0 = divider to normalize to integers
#define Z12(I) ZP(12, I)
#define Z4(I) ZP(4, I)
#define Z2(I) ZP(2, I)
#define Z1(I) ZP(1, I)
#define Z0(I) ZP(0, I)
// calculate factors
if (_7p_9_center) calibration_radius_factor = 0.9f;
h_factor = auto_tune_h();
r_factor = auto_tune_r();
a_factor = auto_tune_a();
calibration_radius_factor = 1.0f;
switch (probe_points) {
case 0:
test_precision = 0.0f; // forced end
break;
case 1:
test_precision = 0.0f; // forced end
LOOP_LINEAR_AXES(axis) e_delta[axis] = +Z4(CEN);
break;
case 2:
if (towers_set) { // see 4 point calibration (towers) matrix
e_delta.set((+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN),
(-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN),
(-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN));
r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
}
else { // see 4 point calibration (opposites) matrix
e_delta.set((-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
(+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
(+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN));
r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
}
break;
default: // see 7 point calibration (towers & opposites) matrix
e_delta.set((+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
(-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
(-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN));
r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
t_delta.set((+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor,
(+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor,
(-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor);
}
break;
}
delta_endstop_adj += e_delta;
delta_radius += r_delta;
delta_tower_angle_trim += t_delta;
}
else if (zero_std_dev >= test_precision) {
// roll back
delta_endstop_adj = e_old;
delta_radius = r_old;
delta_height = h_old;
delta_tower_angle_trim = a_old;
}
if (verbose_level != 0) { // !dry run
// Normalize angles to least-squares
if (_angle_results) {
float a_sum = 0.0f;
LOOP_LINEAR_AXES(axis) a_sum += delta_tower_angle_trim[axis];
LOOP_LINEAR_AXES(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
}
// adjust delta_height and endstops by the max amount
const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c);
delta_height -= z_temp;
LOOP_LINEAR_AXES(axis) delta_endstop_adj[axis] -= z_temp;
}
recalc_delta_settings();
NOMORE(zero_std_dev_min, zero_std_dev);
// print report
if (verbose_level == 3 || verbose_level == 0)
print_calibration_results(z_at_pt, _tower_results, _opposite_results);
if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
SERIAL_ECHOPGM("Calibration OK");
SERIAL_ECHO_SP(32);
#if HAS_BED_PROBE
if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
SERIAL_ECHOPGM("rolling back.");
else
#endif
{
SERIAL_ECHOPAIR_F("std dev:", zero_std_dev_min, 3);
}
SERIAL_EOL();
char mess[21];
strcpy_P(mess, PSTR("Calibration sd:"));
if (zero_std_dev_min < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev_min * 1000.0f));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev_min));
ui.set_status(mess);
print_calibration_settings(_endstop_results, _angle_results);
SERIAL_ECHOLNPGM("Save with M500 and/or copy to Configuration.h");
}
else { // !end iterations
char mess[15];
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (unsigned int)iterations);
else
strcpy_P(mess, PSTR("No convergence"));
SERIAL_ECHO(mess);
SERIAL_ECHO_SP(32);
SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
ui.set_status(mess);
if (verbose_level > 1)
print_calibration_settings(_endstop_results, _angle_results);
}
}
else { // dry run
PGM_P const enddryrun = PSTR("End DRY-RUN");
SERIAL_ECHOPGM_P(enddryrun);
SERIAL_ECHO_SP(35);
SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
char mess[21];
strcpy_P(mess, enddryrun);
strcpy_P(&mess[11], PSTR(" sd:"));
if (zero_std_dev < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev * 1000.0f));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev));
ui.set_status(mess);
}
ac_home();
}
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index));
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_IDLE));
}
#endif // DELTA_AUTO_CALIBRATION

View File

@@ -0,0 +1,157 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(MECHANICAL_GANTRY_CALIBRATION)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
void GcodeSuite::G34() {
// Home before the alignment procedure
home_if_needed();
TERN_(HAS_LEVELING, TEMPORARY_BED_LEVELING_STATE(false));
SET_SOFT_ENDSTOP_LOOSE(true);
TemporaryGlobalEndstopsState unlock_z(false);
#ifdef GANTRY_CALIBRATION_COMMANDS_PRE
gcode.process_subcommands_now_P(PSTR(GANTRY_CALIBRATION_COMMANDS_PRE));
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Sub Commands Processed");
#endif
#ifdef GANTRY_CALIBRATION_SAFE_POSITION
// Move XY to safe position
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Parking XY");
const xy_pos_t safe_pos = GANTRY_CALIBRATION_SAFE_POSITION;
do_blocking_move_to(safe_pos, MMM_TO_MMS(GANTRY_CALIBRATION_XY_PARK_FEEDRATE));
#endif
const float move_distance = parser.intval('Z', GANTRY_CALIBRATION_EXTRA_HEIGHT),
zbase = ENABLED(GANTRY_CALIBRATION_TO_MIN) ? Z_MIN_POS : Z_MAX_POS,
zpounce = zbase - move_distance, zgrind = zbase + move_distance;
// Move Z to pounce position
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Setting Z Pounce");
do_blocking_move_to_z(zpounce, homing_feedrate(Z_AXIS));
// Store current motor settings, then apply reduced value
#define _REDUCE_CURRENT ANY(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM, HAS_MOTOR_CURRENT_DAC, HAS_MOTOR_CURRENT_I2C, HAS_TRINAMIC_CONFIG)
#if _REDUCE_CURRENT
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Reducing Current");
#endif
#if HAS_MOTOR_CURRENT_SPI
const uint16_t target_current = parser.intval('S', GANTRY_CALIBRATION_CURRENT);
const uint32_t previous_current = stepper.motor_current_setting[Z_AXIS];
stepper.set_digipot_current(Z_AXIS, target_current);
#elif HAS_MOTOR_CURRENT_PWM
const uint16_t target_current = parser.intval('S', GANTRY_CALIBRATION_CURRENT);
const uint32_t previous_current = stepper.motor_current_setting[Z_AXIS];
stepper.set_digipot_current(1, target_current);
#elif HAS_MOTOR_CURRENT_DAC
const float target_current = parser.floatval('S', GANTRY_CALIBRATION_CURRENT);
const float previous_current = dac_amps(Z_AXIS, target_current);
stepper_dac.set_current_value(Z_AXIS, target_current);
#elif HAS_MOTOR_CURRENT_I2C
const uint16_t target_current = parser.intval('S', GANTRY_CALIBRATION_CURRENT);
previous_current = dac_amps(Z_AXIS);
digipot_i2c.set_current(Z_AXIS, target_current)
#elif HAS_TRINAMIC_CONFIG
const uint16_t target_current = parser.intval('S', GANTRY_CALIBRATION_CURRENT);
static uint16_t previous_current_arr[NUM_Z_STEPPER_DRIVERS];
#if AXIS_IS_TMC(Z)
previous_current_arr[0] = stepperZ.getMilliamps();
stepperZ.rms_current(target_current);
#endif
#if AXIS_IS_TMC(Z2)
previous_current_arr[1] = stepperZ2.getMilliamps();
stepperZ2.rms_current(target_current);
#endif
#if AXIS_IS_TMC(Z3)
previous_current_arr[2] = stepperZ3.getMilliamps();
stepperZ3.rms_current(target_current);
#endif
#if AXIS_IS_TMC(Z4)
previous_current_arr[3] = stepperZ4.getMilliamps();
stepperZ4.rms_current(target_current);
#endif
#endif
// Do Final Z move to adjust
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Final Z Move");
do_blocking_move_to_z(zgrind, MMM_TO_MMS(GANTRY_CALIBRATION_FEEDRATE));
// Back off end plate, back to normal motion range
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Z Backoff");
do_blocking_move_to_z(zpounce, MMM_TO_MMS(GANTRY_CALIBRATION_FEEDRATE));
#if _REDUCE_CURRENT
// Reset current to original values
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Restore Current");
#endif
#if HAS_MOTOR_CURRENT_SPI
stepper.set_digipot_current(Z_AXIS, previous_current);
#elif HAS_MOTOR_CURRENT_PWM
stepper.set_digipot_current(1, previous_current);
#elif HAS_MOTOR_CURRENT_DAC
stepper_dac.set_current_value(Z_AXIS, previous_current);
#elif HAS_MOTOR_CURRENT_I2C
digipot_i2c.set_current(Z_AXIS, previous_current)
#elif HAS_TRINAMIC_CONFIG
#if AXIS_IS_TMC(Z)
stepperZ.rms_current(previous_current_arr[0]);
#endif
#if AXIS_IS_TMC(Z2)
stepperZ2.rms_current(previous_current_arr[1]);
#endif
#if AXIS_IS_TMC(Z3)
stepperZ3.rms_current(previous_current_arr[2]);
#endif
#if AXIS_IS_TMC(Z4)
stepperZ4.rms_current(previous_current_arr[3]);
#endif
#endif
#ifdef GANTRY_CALIBRATION_COMMANDS_POST
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Running Post Commands");
gcode.process_subcommands_now_P(PSTR(GANTRY_CALIBRATION_COMMANDS_POST));
#endif
SET_SOFT_ENDSTOP_LOOSE(false);
}
#endif // MECHANICAL_GANTRY_CALIBRATION

View File

@@ -0,0 +1,548 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfigPre.h"
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
#include "../../feature/z_stepper_align.h"
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#include "../../lcd/marlinui.h" // for LCD_MESSAGEPGM
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
#if HAS_MULTI_HOTEND
#include "../../module/tool_change.h"
#endif
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
#include "../../libs/least_squares_fit.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
#if NUM_Z_STEPPER_DRIVERS >= 3
#define TRIPLE_Z 1
#if NUM_Z_STEPPER_DRIVERS >= 4
#define QUAD_Z 1
#endif
#endif
/**
* G34: Z-Stepper automatic alignment
*
* Manual stepper lock controls (reset by G28):
* L Unlock all steppers
* Z<1-4> Z stepper to lock / unlock
* S<state> 0=UNLOCKED 1=LOCKED. If omitted, assume LOCKED.
*
* Examples:
* G34 Z1 ; Lock Z1
* G34 L Z2 ; Unlock all, then lock Z2
* G34 Z2 S0 ; Unlock Z2
*
* With Z_STEPPER_AUTO_ALIGN:
* I<iterations> Number of tests. If omitted, Z_STEPPER_ALIGN_ITERATIONS.
* T<accuracy> Target Accuracy factor. If omitted, Z_STEPPER_ALIGN_ACC.
* A<amplification> Provide an Amplification value. If omitted, Z_STEPPER_ALIGN_AMP.
* R Flag to recalculate points based on current probe offsets
*/
void GcodeSuite::G34() {
DEBUG_SECTION(log_G34, "G34", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) log_machine_info();
planner.synchronize(); // Prevent damage
const bool seenL = parser.seen('L');
if (seenL) stepper.set_all_z_lock(false);
const bool seenZ = parser.seenval('Z');
if (seenZ) {
const bool state = parser.boolval('S', true);
switch (parser.intval('Z')) {
case 1: stepper.set_z1_lock(state); break;
case 2: stepper.set_z2_lock(state); break;
#if TRIPLE_Z
case 3: stepper.set_z3_lock(state); break;
#if QUAD_Z
case 4: stepper.set_z4_lock(state); break;
#endif
#endif
}
}
if (seenL || seenZ) {
stepper.set_separate_multi_axis(seenZ);
return;
}
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
do { // break out on error
const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
if (!WITHIN(z_auto_align_iterations, 1, 30)) {
SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
break;
}
const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC);
if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) {
SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0).");
break;
}
const float z_auto_align_amplification = TERN(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, Z_STEPPER_ALIGN_AMP, parser.floatval('A', Z_STEPPER_ALIGN_AMP));
if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) {
SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0).");
break;
}
if (parser.seen('R')) z_stepper_align.reset_to_default();
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
// Disable the leveling matrix before auto-aligning
#if HAS_LEVELING
#if ENABLED(RESTORE_LEVELING_AFTER_G34)
const bool leveling_was_active = planner.leveling_active;
#endif
set_bed_leveling_enabled(false);
#endif
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
// Always home with tool 0 active
#if HAS_MULTI_HOTEND
const uint8_t old_tool_index = active_extruder;
tool_change(0, true);
#endif
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
// In BLTOUCH HS mode, the probe travels in a deployed state.
// Users of G34 might have a badly misaligned bed, so raise Z by the
// length of the deployed pin (BLTOUCH stroke < 7mm)
#define Z_BASIC_CLEARANCE (Z_CLEARANCE_BETWEEN_PROBES + 7.0f * BOTH(BLTOUCH, BLTOUCH_HS_MODE))
// Compute a worst-case clearance height to probe from. After the first
// iteration this will be re-calculated based on the actual bed position
auto magnitude2 = [&](const uint8_t i, const uint8_t j) {
const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
return HYPOT2(diff.x, diff.y);
};
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(_MAX(0, magnitude2(0, 1)
#if TRIPLE_Z
, magnitude2(2, 1), magnitude2(2, 0)
#if QUAD_Z
, magnitude2(3, 2), magnitude2(3, 1), magnitude2(3, 0)
#endif
#endif
));
// Home before the alignment procedure
home_if_needed();
// Move the Z coordinate realm towards the positive - dirty trick
current_position.z += z_probe * 0.5f;
sync_plan_position();
// Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
// This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N_1(NUM_Z_STEPPER_DRIVERS, 10000.0f);
#else
float last_z_align_level_indicator = 10000.0f;
#endif
float z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 },
z_maxdiff = 0.0f,
amplification = z_auto_align_amplification;
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
bool adjustment_reverse = false;
#endif
#if HAS_STATUS_MESSAGE
PGM_P const msg_iteration = GET_TEXT(MSG_ITERATION);
const uint8_t iter_str_len = strlen_P(msg_iteration);
#endif
// Final z and iteration values will be used after breaking the loop
float z_measured_min;
uint8_t iteration = 0;
bool err_break = false; // To break out of nested loops
while (iteration < z_auto_align_iterations) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions.");
const int iter = iteration + 1;
SERIAL_ECHOLNPAIR("\nG34 Iteration: ", iter);
#if HAS_STATUS_MESSAGE
char str[iter_str_len + 2 + 1];
sprintf_P(str, msg_iteration, iter);
ui.set_status(str);
#endif
// Initialize minimum value
z_measured_min = 100000.0f;
float z_measured_max = -100000.0f;
// Probe all positions (one per Z-Stepper)
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
// iteration odd/even --> downward / upward stepper sequence
const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i;
// Safe clearance even on an incline
if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe);
if (DEBUGGING(LEVELING))
DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
// Probe a Z height for each stepper.
// Probing sanity check is disabled, as it would trigger even in normal cases because
// current_position.z has been manually altered in the "dirty trick" above.
const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false);
if (isnan(z_probed_height)) {
SERIAL_ECHOLNPGM("Probing failed");
LCD_MESSAGEPGM(MSG_LCD_PROBING_FAILED);
err_break = true;
break;
}
// Add height to each value, to provide a more useful target height for
// the next iteration of probing. This allows adjustments to be made away from the bed.
z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", iprobe + 1, " measured position is ", z_measured[iprobe]);
// Remember the minimum measurement to calculate the correction later on
z_measured_min = _MIN(z_measured_min, z_measured[iprobe]);
z_measured_max = _MAX(z_measured_max, z_measured[iprobe]);
} // for (i)
if (err_break) break;
// Adapt the next probe clearance height based on the new measurements.
// Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment.
z_maxdiff = z_measured_max - z_measured_min;
z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff;
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Replace the initial values in z_measured with calculated heights at
// each stepper position. This allows the adjustment algorithm to be
// shared between both possible probing mechanisms.
// This must be done after the next z_probe height is calculated, so that
// the height is calculated from actual print area positions, and not
// extrapolated motor movements.
// Compute the least-squares fit for all probed points.
// Calculate the Z position of each stepper and store it in z_measured.
// This allows the actual adjustment logic to be shared by both algorithms.
linear_fit_data lfd;
incremental_LSF_reset(&lfd);
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
SERIAL_ECHOLNPAIR("PROBEPT_", i, ": ", z_measured[i]);
incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
}
finish_incremental_LSF(&lfd);
z_measured_min = 100000.0f;
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D);
z_measured_min = _MIN(z_measured_min, z_measured[i]);
}
SERIAL_ECHOLNPAIR(
LIST_N(DOUBLE(NUM_Z_STEPPER_DRIVERS),
"Calculated Z1=", z_measured[0],
" Z2=", z_measured[1],
" Z3=", z_measured[2],
" Z4=", z_measured[3]
)
);
#endif
SERIAL_ECHOLNPAIR("\n"
"Z2-Z1=", ABS(z_measured[1] - z_measured[0])
#if TRIPLE_Z
, " Z3-Z2=", ABS(z_measured[2] - z_measured[1])
, " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
#if QUAD_Z
, " Z4-Z3=", ABS(z_measured[3] - z_measured[2])
, " Z4-Z2=", ABS(z_measured[3] - z_measured[1])
, " Z4-Z1=", ABS(z_measured[3] - z_measured[0])
#endif
#endif
);
#if HAS_STATUS_MESSAGE
char fstr1[10];
char msg[6 + (6 + 5) * NUM_Z_STEPPER_DRIVERS + 1]
#if TRIPLE_Z
, fstr2[10], fstr3[10]
#if QUAD_Z
, fstr4[10], fstr5[10], fstr6[10]
#endif
#endif
;
sprintf_P(msg,
PSTR("1:2=%s" TERN_(TRIPLE_Z, " 3-2=%s 3-1=%s") TERN_(QUAD_Z, " 4-3=%s 4-2=%s 4-1=%s")),
dtostrf(ABS(z_measured[1] - z_measured[0]), 1, 3, fstr1)
OPTARG(TRIPLE_Z,
dtostrf(ABS(z_measured[2] - z_measured[1]), 1, 3, fstr2),
dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3))
OPTARG(QUAD_Z,
dtostrf(ABS(z_measured[3] - z_measured[2]), 1, 3, fstr4),
dtostrf(ABS(z_measured[3] - z_measured[1]), 1, 3, fstr5),
dtostrf(ABS(z_measured[3] - z_measured[0]), 1, 3, fstr6))
);
ui.set_status(msg);
#endif
auto decreasing_accuracy = [](const_float_t v1, const_float_t v2) {
if (v1 < v2 * 0.7f) {
SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
return true;
}
return false;
};
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Check if the applied corrections go in the correct direction.
// Calculate the sum of the absolute deviations from the mean of the probe measurements.
// Compare to the last iteration to ensure it's getting better.
// Calculate mean value as a reference
float z_measured_mean = 0.0f;
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_measured_mean += z_measured[zstepper];
z_measured_mean /= NUM_Z_STEPPER_DRIVERS;
// Calculate the sum of the absolute deviations from the mean value
float z_align_level_indicator = 0.0f;
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS)
z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean);
// If it's getting worse, stop and throw an error
err_break = decreasing_accuracy(last_z_align_level_indicator, z_align_level_indicator);
if (err_break) break;
last_z_align_level_indicator = z_align_level_indicator;
#endif
// The following correction actions are to be enabled for select Z-steppers only
stepper.set_separate_multi_axis(true);
bool success_break = true;
// Correct the individual stepper offsets
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) {
// Calculate current stepper move
float z_align_move = z_measured[zstepper] - z_measured_min;
const float z_align_abs = ABS(z_align_move);
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Optimize one iteration's correction based on the first measurements
if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification;
// Check for less accuracy compared to last move
if (decreasing_accuracy(last_z_align_move[zstepper], z_align_abs)) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", zstepper + 1, " last_z_align_move = ", last_z_align_move[zstepper]);
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", zstepper + 1, " z_align_abs = ", z_align_abs);
adjustment_reverse = !adjustment_reverse;
}
// Remember the alignment for the next iteration, but only if steppers move,
// otherwise it would be just zero (in case this stepper was at z_measured_min already)
if (z_align_abs > 0) last_z_align_move[zstepper] = z_align_abs;
#endif
// Stop early if all measured points achieve accuracy target
if (z_align_abs > z_auto_align_accuracy) success_break = false;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", zstepper + 1, " corrected by ", z_align_move);
// Lock all steppers except one
stepper.set_all_z_lock(true, zstepper);
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Decreasing accuracy was detected so move was inverted.
// Will match reversed Z steppers on dual steppers. Triple will need more work to map.
if (adjustment_reverse) {
z_align_move = -z_align_move;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", zstepper + 1, " correction reversed to ", z_align_move);
}
#endif
// Do a move to correct part of the misalignment for the current stepper
do_blocking_move_to_z(amplification * z_align_move + current_position.z);
} // for (zstepper)
// Back to normal stepper operations
stepper.set_all_z_lock(false);
stepper.set_separate_multi_axis(false);
if (err_break) break;
if (success_break) {
SERIAL_ECHOLNPGM("Target accuracy achieved.");
LCD_MESSAGEPGM(MSG_ACCURACY_ACHIEVED);
break;
}
iteration++;
} // while (iteration < z_auto_align_iterations)
if (err_break)
SERIAL_ECHOLNPGM("G34 aborted.");
else {
SERIAL_ECHOLNPAIR("Did ", iteration + (iteration != z_auto_align_iterations), " of ", z_auto_align_iterations);
SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
}
// Stow the probe because the last call to probe.probe_at_point(...)
// leaves the probe deployed when it's successful.
IF_DISABLED(TOUCH_MI_PROBE, probe.stow());
#if ENABLED(HOME_AFTER_G34)
// After this operation the z position needs correction
set_axis_never_homed(Z_AXIS);
// Home Z after the alignment procedure
process_subcommands_now_P(PSTR("G28Z"));
#else
// Use the probed height from the last iteration to determine the Z height.
// z_measured_min is used, because all steppers are aligned to z_measured_min.
// Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier.
current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES;
sync_plan_position();
#endif
// Restore the active tool after homing
TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER))); // Fetch previous tool for parking extruder
#if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G34)
set_bed_leveling_enabled(leveling_was_active);
#endif
}while(0);
#endif // Z_STEPPER_AUTO_ALIGN
}
#endif // Z_MULTI_ENDSTOPS || Z_STEPPER_AUTO_ALIGN
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
/**
* M422: Set a Z-Stepper automatic alignment XY point.
* Use repeatedly to set multiple points.
*
* S<index> : Index of the probe point to set
*
* With Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS:
* W<index> : Index of the Z stepper position to set
* The W and S parameters may not be combined.
*
* S and W require an X and/or Y parameter
* X<pos> : X position to set (Unchanged if omitted)
* Y<pos> : Y position to set (Unchanged if omitted)
*
* R : Recalculate points based on current probe offsets
*/
void GcodeSuite::M422() {
if (parser.seen('R')) {
z_stepper_align.reset_to_default();
return;
}
if (!parser.seen_any()) {
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), i + 1, SP_X_STR, z_stepper_align.xy[i].x, SP_Y_STR, z_stepper_align.xy[i].y);
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), i + 1, SP_X_STR, z_stepper_align.stepper_xy[i].x, SP_Y_STR, z_stepper_align.stepper_xy[i].y);
#endif
return;
}
const bool is_probe_point = parser.seen('S');
if (TERN0(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, is_probe_point && parser.seen('W'))) {
SERIAL_ECHOLNPGM("?(S) and (W) may not be combined.");
return;
}
xy_pos_t *pos_dest = (
TERN_(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, !is_probe_point ? z_stepper_align.stepper_xy :)
z_stepper_align.xy
);
if (!is_probe_point && TERN1(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, !parser.seen('W'))) {
SERIAL_ECHOLNPGM("?(S)" TERN_(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, " or (W)") " is required.");
return;
}
// Get the Probe Position Index or Z Stepper Index
int8_t position_index;
if (is_probe_point) {
position_index = parser.intval('S') - 1;
if (!WITHIN(position_index, 0, int8_t(NUM_Z_STEPPER_DRIVERS) - 1)) {
SERIAL_ECHOLNPGM("?(S) Probe-position index invalid.");
return;
}
}
else {
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
position_index = parser.intval('W') - 1;
if (!WITHIN(position_index, 0, NUM_Z_STEPPER_DRIVERS - 1)) {
SERIAL_ECHOLNPGM("?(W) Z-stepper index invalid.");
return;
}
#endif
}
const xy_pos_t pos = {
parser.floatval('X', pos_dest[position_index].x),
parser.floatval('Y', pos_dest[position_index].y)
};
if (is_probe_point) {
if (!probe.can_reach(pos.x, Y_CENTER)) {
SERIAL_ECHOLNPGM("?(X) out of bounds.");
return;
}
if (!probe.can_reach(pos)) {
SERIAL_ECHOLNPGM("?(Y) out of bounds.");
return;
}
}
pos_dest[position_index] = pos;
}
#endif // Z_STEPPER_AUTO_ALIGN

View File

@@ -0,0 +1,752 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../MarlinCore.h"
#if ENABLED(CALIBRATION_GCODE)
#include "../gcode.h"
#if ENABLED(BACKLASH_GCODE)
#include "../../feature/backlash.h"
#endif
#include "../../lcd/marlinui.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/tool_change.h"
#include "../../module/endstops.h"
#include "../../feature/bedlevel/bedlevel.h"
#if !AXIS_CAN_CALIBRATE(X)
#undef CALIBRATION_MEASURE_LEFT
#undef CALIBRATION_MEASURE_RIGHT
#endif
#if !AXIS_CAN_CALIBRATE(Y)
#undef CALIBRATION_MEASURE_FRONT
#undef CALIBRATION_MEASURE_BACK
#endif
#if !AXIS_CAN_CALIBRATE(Z)
#undef CALIBRATION_MEASURE_AT_TOP_EDGES
#endif
/**
* G425 backs away from the calibration object by various distances
* depending on the confidence level:
*
* UNKNOWN - No real notion on where the calibration object is on the bed
* UNCERTAIN - Measurement may be uncertain due to backlash
* CERTAIN - Measurement obtained with backlash compensation
*/
#ifndef CALIBRATION_MEASUREMENT_UNKNOWN
#define CALIBRATION_MEASUREMENT_UNKNOWN 5.0 // mm
#endif
#ifndef CALIBRATION_MEASUREMENT_UNCERTAIN
#define CALIBRATION_MEASUREMENT_UNCERTAIN 1.0 // mm
#endif
#ifndef CALIBRATION_MEASUREMENT_CERTAIN
#define CALIBRATION_MEASUREMENT_CERTAIN 0.5 // mm
#endif
#if BOTH(CALIBRATION_MEASURE_LEFT, CALIBRATION_MEASURE_RIGHT)
#define HAS_X_CENTER 1
#endif
#if HAS_Y_AXIS && BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
#define HAS_Y_CENTER 1
#endif
#if LINEAR_AXES >= 4 && BOTH(CALIBRATION_MEASURE_IMIN, CALIBRATION_MEASURE_IMAX)
#define HAS_I_CENTER 1
#endif
#if LINEAR_AXES >= 5 && BOTH(CALIBRATION_MEASURE_JMIN, CALIBRATION_MEASURE_JMAX)
#define HAS_J_CENTER 1
#endif
#if LINEAR_AXES >= 6 && BOTH(CALIBRATION_MEASURE_KMIN, CALIBRATION_MEASURE_KMAX)
#define HAS_K_CENTER 1
#endif
enum side_t : uint8_t {
TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES,
LIST_N(DOUBLE(SUB3(LINEAR_AXES)), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM)
};
static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER;
static constexpr xyz_float_t dimensions CALIBRATION_OBJECT_DIMENSIONS;
static constexpr xy_float_t nod = { CALIBRATION_NOZZLE_OUTER_DIAMETER, CALIBRATION_NOZZLE_OUTER_DIAMETER };
struct measurements_t {
xyz_pos_t obj_center = true_center; // Non-static must be assigned from xyz_pos_t
float obj_side[NUM_SIDES], backlash[NUM_SIDES];
xyz_float_t pos_error;
xy_float_t nozzle_outer_dimension = nod;
};
#if ENABLED(BACKLASH_GCODE)
#define TEMPORARY_BACKLASH_CORRECTION(value) REMEMBER(tbst, backlash.correction, value)
#else
#define TEMPORARY_BACKLASH_CORRECTION(value)
#endif
#if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
#define TEMPORARY_BACKLASH_SMOOTHING(value) REMEMBER(tbsm, backlash.smoothing_mm, value)
#else
#define TEMPORARY_BACKLASH_SMOOTHING(value)
#endif
inline void calibration_move() {
do_blocking_move_to((xyz_pos_t)current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
}
/**
* Move to the exact center above the calibration object
*
* m in - Measurement record
* uncertainty in - How far away from the object top to park
*/
inline void park_above_object(measurements_t &m, const float uncertainty) {
// Move to safe distance above calibration object
current_position.z = m.obj_center.z + dimensions.z / 2 + uncertainty;
calibration_move();
// Move to center of calibration object in XY
current_position = xy_pos_t(m.obj_center);
calibration_move();
}
#if HAS_MULTI_HOTEND
inline void set_nozzle(measurements_t &m, const uint8_t extruder) {
if (extruder != active_extruder) {
park_above_object(m, CALIBRATION_MEASUREMENT_UNKNOWN);
tool_change(extruder);
}
}
#endif
#if HAS_HOTEND_OFFSET
inline void normalize_hotend_offsets() {
LOOP_S_L_N(e, 1, HOTENDS)
hotend_offset[e] -= hotend_offset[0];
hotend_offset[0].reset();
}
#endif
#if !PIN_EXISTS(CALIBRATION)
#include "../../module/probe.h"
#endif
inline bool read_calibration_pin() {
return (
#if PIN_EXISTS(CALIBRATION)
READ(CALIBRATION_PIN) != CALIBRATION_PIN_INVERTING
#else
PROBE_TRIGGERED()
#endif
);
}
/**
* Move along axis in the specified dir until the probe value becomes stop_state,
* then return the axis value.
*
* axis in - Axis along which the measurement will take place
* dir in - Direction along that axis (-1 or 1)
* stop_state in - Move until probe pin becomes this value
* fast in - Fast vs. precise measurement
*/
float measuring_movement(const AxisEnum axis, const int dir, const bool stop_state, const bool fast) {
const float step = fast ? 0.25 : CALIBRATION_MEASUREMENT_RESOLUTION;
const feedRate_t mms = fast ? MMM_TO_MMS(CALIBRATION_FEEDRATE_FAST) : MMM_TO_MMS(CALIBRATION_FEEDRATE_SLOW);
const float limit = fast ? 50 : 5;
destination = current_position;
for (float travel = 0; travel < limit; travel += step) {
destination[axis] += dir * step;
do_blocking_move_to((xyz_pos_t)destination, mms);
planner.synchronize();
if (read_calibration_pin() == stop_state) break;
}
return destination[axis];
}
/**
* Move along axis until the probe is triggered. Move toolhead to its starting
* point and return the measured value.
*
* axis in - Axis along which the measurement will take place
* dir in - Direction along that axis (-1 or 1)
* stop_state in - Move until probe pin becomes this value
* backlash_ptr in/out - When not nullptr, measure and record axis backlash
* uncertainty in - If uncertainty is CALIBRATION_MEASUREMENT_UNKNOWN, do a fast probe.
*/
inline float measure(const AxisEnum axis, const int dir, const bool stop_state, float * const backlash_ptr, const float uncertainty) {
const bool fast = uncertainty == CALIBRATION_MEASUREMENT_UNKNOWN;
// Save the current position of the specified axis
const float start_pos = current_position[axis];
// Take a measurement. Only the specified axis will be affected.
const float measured_pos = measuring_movement(axis, dir, stop_state, fast);
// Measure backlash
if (backlash_ptr && !fast) {
const float release_pos = measuring_movement(axis, -dir, !stop_state, fast);
*backlash_ptr = ABS(release_pos - measured_pos);
}
// Move back to the starting position
destination = current_position;
destination[axis] = start_pos;
do_blocking_move_to((xyz_pos_t)destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
return measured_pos;
}
/**
* Probe one side of the calibration object
*
* m in/out - Measurement record, m.obj_center and m.obj_side will be updated.
* uncertainty in - How far away from the calibration object to begin probing
* side in - Side of probe where probe will occur
* probe_top_at_edge in - When probing sides, probe top of calibration object nearest edge
* to find out height of edge
*/
inline void probe_side(measurements_t &m, const float uncertainty, const side_t side, const bool probe_top_at_edge=false) {
const xyz_float_t dimensions = CALIBRATION_OBJECT_DIMENSIONS;
AxisEnum axis;
float dir = 1;
park_above_object(m, uncertainty);
switch (side) {
#if AXIS_CAN_CALIBRATE(X)
case RIGHT: dir = -1;
case LEFT: axis = X_AXIS; break;
#endif
#if LINEAR_AXES >= 2 && AXIS_CAN_CALIBRATE(Y)
case BACK: dir = -1;
case FRONT: axis = Y_AXIS; break;
#endif
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
case TOP: {
const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center.z = measurement - dimensions.z / 2;
m.obj_side[TOP] = measurement;
return;
}
#endif
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
case IMINIMUM: dir = -1;
case IMAXIMUM: axis = I_AXIS; break;
#endif
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
case JMINIMUM: dir = -1;
case JMAXIMUM: axis = J_AXIS; break;
#endif
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
case KMINIMUM: dir = -1;
case KMAXIMUM: axis = K_AXIS; break;
#endif
default: return;
}
if (probe_top_at_edge) {
#if AXIS_CAN_CALIBRATE(Z)
// Probe top nearest the side we are probing
current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 - m.nozzle_outer_dimension[axis]);
calibration_move();
m.obj_side[TOP] = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center.z = m.obj_side[TOP] - dimensions.z / 2;
#endif
}
if ((AXIS_CAN_CALIBRATE(X) && axis == X_AXIS) || (AXIS_CAN_CALIBRATE(Y) && axis == Y_AXIS)) {
// Move to safe distance to the side of the calibration object
current_position[axis] = m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2 + uncertainty);
calibration_move();
// Plunge below the side of the calibration object and measure
current_position.z = m.obj_side[TOP] - (CALIBRATION_NOZZLE_TIP_HEIGHT) * 0.7f;
calibration_move();
const float measurement = measure(axis, dir, true, &m.backlash[side], uncertainty);
m.obj_center[axis] = measurement + dir * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2);
m.obj_side[side] = measurement;
}
}
/**
* Probe all sides of the calibration calibration object
*
* m in/out - Measurement record: center, backlash and error values be updated.
* uncertainty in - How far away from the calibration object to begin probing
*/
inline void probe_sides(measurements_t &m, const float uncertainty) {
#if ENABLED(CALIBRATION_MEASURE_AT_TOP_EDGES)
constexpr bool probe_top_at_edge = true;
#else
// Probing at the exact center only works if the center is flat. Probing on a washer
// or bolt will require probing the top near the side edges, away from the center.
constexpr bool probe_top_at_edge = false;
probe_side(m, uncertainty, TOP);
#endif
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_IMIN, probe_side(m, uncertainty, IMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_IMAX, probe_side(m, uncertainty, IMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_JMIN, probe_side(m, uncertainty, JMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_JMAX, probe_side(m, uncertainty, JMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMIN, probe_side(m, uncertainty, KMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMAX, probe_side(m, uncertainty, KMAXIMUM, probe_top_at_edge));
// Compute the measured center of the calibration object.
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
TERN_(HAS_I_CENTER, m.obj_center.i = (m.obj_side[IMINIMUM] + m.obj_side[IMAXIMUM]) / 2);
TERN_(HAS_J_CENTER, m.obj_center.j = (m.obj_side[JMINIMUM] + m.obj_side[JMAXIMUM]) / 2);
TERN_(HAS_K_CENTER, m.obj_center.k = (m.obj_side[KMINIMUM] + m.obj_side[KMAXIMUM]) / 2);
// Compute the outside diameter of the nozzle at the height
// at which it makes contact with the calibration object
TERN_(HAS_X_CENTER, m.nozzle_outer_dimension.x = m.obj_side[RIGHT] - m.obj_side[LEFT] - dimensions.x);
TERN_(HAS_Y_CENTER, m.nozzle_outer_dimension.y = m.obj_side[BACK] - m.obj_side[FRONT] - dimensions.y);
park_above_object(m, uncertainty);
// The difference between the known and the measured location
// of the calibration object is the positional error
LINEAR_AXIS_CODE(
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x),
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y),
m.pos_error.z = true_center.z - m.obj_center.z,
m.pos_error.i = TERN0(HAS_I_CENTER, true_center.i - m.obj_center.i),
m.pos_error.j = TERN0(HAS_J_CENTER, true_center.j - m.obj_center.j),
m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k)
);
}
#if ENABLED(CALIBRATION_REPORTING)
inline void report_measured_faces(const measurements_t &m) {
SERIAL_ECHOLNPGM("Sides:");
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR(" Top: ", m.obj_side[TOP]);
#endif
#if ENABLED(CALIBRATION_MEASURE_LEFT)
SERIAL_ECHOLNPAIR(" Left: ", m.obj_side[LEFT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_RIGHT)
SERIAL_ECHOLNPAIR(" Right: ", m.obj_side[RIGHT]);
#endif
#if HAS_Y_AXIS
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_BACK)
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
#endif
#endif
#if LINEAR_AXES >= 4
#if ENABLED(CALIBRATION_MEASURE_IMIN)
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.obj_side[IMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_IMAX)
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.obj_side[IMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 5
#if ENABLED(CALIBRATION_MEASURE_JMIN)
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.obj_side[JMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_JMAX)
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.obj_side[JMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 6
#if ENABLED(CALIBRATION_MEASURE_KMIN)
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.obj_side[KMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_KMAX)
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.obj_side[KMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
inline void report_measured_center(const measurements_t &m) {
SERIAL_ECHOLNPGM("Center:");
#if HAS_X_CENTER
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.obj_center.x);
#endif
#if HAS_Y_CENTER
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.obj_center.y);
#endif
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.obj_center.z);
#if HAS_I_CENTER
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.obj_center.i);
#endif
#if HAS_J_CENTER
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.obj_center.j);
#endif
#if HAS_K_CENTER
SERIAL_ECHOLNPAIR_P(SP_K_STR, m.obj_center.k);
#endif
SERIAL_EOL();
}
inline void report_measured_backlash(const measurements_t &m) {
SERIAL_ECHOLNPGM("Backlash:");
#if AXIS_CAN_CALIBRATE(X)
#if ENABLED(CALIBRATION_MEASURE_LEFT)
SERIAL_ECHOLNPAIR(" Left: ", m.backlash[LEFT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_RIGHT)
SERIAL_ECHOLNPAIR(" Right: ", m.backlash[RIGHT]);
#endif
#endif
#if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPAIR(" Front: ", m.backlash[FRONT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_BACK)
SERIAL_ECHOLNPAIR(" Back: ", m.backlash[BACK]);
#endif
#endif
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR(" Top: ", m.backlash[TOP]);
#endif
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
#if ENABLED(CALIBRATION_MEASURE_IMIN)
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.backlash[IMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_IMAX)
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.backlash[IMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
#if ENABLED(CALIBRATION_MEASURE_JMIN)
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.backlash[JMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_JMAX)
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.backlash[JMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
#if ENABLED(CALIBRATION_MEASURE_KMIN)
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.backlash[KMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_KMAX)
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.backlash[KMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
inline void report_measured_positional_error(const measurements_t &m) {
SERIAL_CHAR('T');
SERIAL_ECHO(active_extruder);
SERIAL_ECHOLNPGM(" Positional Error:");
#if HAS_X_CENTER && AXIS_CAN_CALIBRATE(X)
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.pos_error.x);
#endif
#if HAS_Y_CENTER && AXIS_CAN_CALIBRATE(Y)
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.pos_error.y);
#endif
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
#endif
#if HAS_I_CENTER && AXIS_CAN_CALIBRATE(I)
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.pos_error.i);
#endif
#if HAS_J_CENTER && AXIS_CAN_CALIBRATE(J)
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.pos_error.j);
#endif
#if HAS_K_CENTER && AXIS_CAN_CALIBRATE(K)
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
#endif
SERIAL_EOL();
}
inline void report_measured_nozzle_dimensions(const measurements_t &m) {
SERIAL_ECHOLNPGM("Nozzle Tip Outer Dimensions:");
#if HAS_X_CENTER
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
#endif
#if HAS_Y_CENTER
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
#endif
SERIAL_EOL();
UNUSED(m);
}
#if HAS_HOTEND_OFFSET
//
// This function requires normalize_hotend_offsets() to be called
//
inline void report_hotend_offsets() {
LOOP_S_L_N(e, 1, HOTENDS)
SERIAL_ECHOLNPAIR_P(PSTR("T"), e, PSTR(" Hotend Offset X"), hotend_offset[e].x, SP_Y_STR, hotend_offset[e].y, SP_Z_STR, hotend_offset[e].z);
}
#endif
#endif // CALIBRATION_REPORTING
/**
* Probe around the calibration object to measure backlash
*
* m in/out - Measurement record, updated with new readings
* uncertainty in - How far away from the object to begin probing
*/
inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
// Backlash compensation should be off while measuring backlash
{
// New scope for TEMPORARY_BACKLASH_CORRECTION
TEMPORARY_BACKLASH_CORRECTION(all_off);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
probe_sides(m, uncertainty);
#if ENABLED(BACKLASH_GCODE)
#if HAS_X_CENTER
backlash.distance_mm.x = (m.backlash[LEFT] + m.backlash[RIGHT]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_LEFT)
backlash.distance_mm.x = m.backlash[LEFT];
#elif ENABLED(CALIBRATION_MEASURE_RIGHT)
backlash.distance_mm.x = m.backlash[RIGHT];
#endif
#if HAS_Y_CENTER
backlash.distance_mm.y = (m.backlash[FRONT] + m.backlash[BACK]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_FRONT)
backlash.distance_mm.y = m.backlash[FRONT];
#elif ENABLED(CALIBRATION_MEASURE_BACK)
backlash.distance_mm.y = m.backlash[BACK];
#endif
TERN_(HAS_Z_AXIS, if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP]);
#if HAS_I_CENTER
backlash.distance_mm.i = (m.backlash[IMINIMUM] + m.backlash[IMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_IMIN)
backlash.distance_mm.i = m.backlash[IMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_IMAX)
backlash.distance_mm.i = m.backlash[IMAXIMUM];
#endif
#if HAS_J_CENTER
backlash.distance_mm.j = (m.backlash[JMINIMUM] + m.backlash[JMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_JMIN)
backlash.distance_mm.j = m.backlash[JMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_JMAX)
backlash.distance_mm.j = m.backlash[JMAXIMUM];
#endif
#if HAS_K_CENTER
backlash.distance_mm.k = (m.backlash[KMINIMUM] + m.backlash[KMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_KMIN)
backlash.distance_mm.k = m.backlash[KMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_KMAX)
backlash.distance_mm.k = m.backlash[KMAXIMUM];
#endif
#endif // BACKLASH_GCODE
}
#if ENABLED(BACKLASH_GCODE)
// Turn on backlash compensation and move in all
// allowed directions to take up any backlash
{
// New scope for TEMPORARY_BACKLASH_CORRECTION
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
const xyz_float_t move = LINEAR_AXIS_ARRAY(
AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3,
AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3
);
current_position += move; calibration_move();
current_position -= move; calibration_move();
}
#endif
}
inline void update_measurements(measurements_t &m, const AxisEnum axis) {
current_position[axis] += m.pos_error[axis];
m.obj_center[axis] = true_center[axis];
m.pos_error[axis] = 0;
}
/**
* Probe around the calibration object. Adjust the position and toolhead offset
* using the deviation from the known position of the calibration object.
*
* m in/out - Measurement record, updated with new readings
* uncertainty in - How far away from the object to begin probing
* extruder in - What extruder to probe
*
* Prerequisites:
* - Call calibrate_backlash() beforehand for best accuracy
*/
inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const uint8_t extruder) {
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
TERN(HAS_MULTI_HOTEND, set_nozzle(m, extruder), UNUSED(extruder));
probe_sides(m, uncertainty);
// Adjust the hotend offset
#if HAS_HOTEND_OFFSET
if (ENABLED(HAS_X_CENTER) && AXIS_CAN_CALIBRATE(X)) hotend_offset[extruder].x += m.pos_error.x;
if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) hotend_offset[extruder].y += m.pos_error.y;
if (AXIS_CAN_CALIBRATE(Z)) hotend_offset[extruder].z += m.pos_error.z;
normalize_hotend_offsets();
#endif
// Correct for positional error, so the object
// is at the known actual spot
planner.synchronize();
if (ENABLED(HAS_X_CENTER) && AXIS_CAN_CALIBRATE(X)) update_measurements(m, X_AXIS);
if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) update_measurements(m, Y_AXIS);
if (AXIS_CAN_CALIBRATE(Z)) update_measurements(m, Z_AXIS);
TERN_(HAS_I_CENTER, update_measurements(m, I_AXIS));
TERN_(HAS_J_CENTER, update_measurements(m, J_AXIS));
TERN_(HAS_K_CENTER, update_measurements(m, K_AXIS));
sync_plan_position();
}
/**
* Probe around the calibration object for all toolheads, adjusting the coordinate
* system for the first nozzle and the nozzle offset for subsequent nozzles.
*
* m in/out - Measurement record, updated with new readings
* uncertainty in - How far away from the object to begin probing
*/
inline void calibrate_all_toolheads(measurements_t &m, const float uncertainty) {
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
HOTEND_LOOP() calibrate_toolhead(m, uncertainty, e);
TERN_(HAS_HOTEND_OFFSET, normalize_hotend_offsets());
TERN_(HAS_MULTI_HOTEND, set_nozzle(m, 0));
}
/**
* Perform a full auto-calibration routine:
*
* 1) For each nozzle, touch top and sides of object to determine object position and
* nozzle offsets. Do a fast but rough search over a wider area.
* 2) With the first nozzle, touch top and sides of object to determine backlash values
* for all axis (if BACKLASH_GCODE is enabled)
* 3) For each nozzle, touch top and sides of object slowly to determine precise
* position of object. Adjust coordinate system and nozzle offsets so probed object
* location corresponds to known object location with a high degree of precision.
*/
inline void calibrate_all() {
measurements_t m;
TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
// Do a fast and rough calibration of the toolheads
calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNKNOWN);
TERN_(BACKLASH_GCODE, calibrate_backlash(m, CALIBRATION_MEASUREMENT_UNCERTAIN));
// Cycle the toolheads so the servos settle into their "natural" positions
#if HAS_MULTI_HOTEND
HOTEND_LOOP() set_nozzle(m, e);
#endif
// Do a slow and precise calibration of the toolheads
calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNCERTAIN);
current_position.x = X_CENTER;
calibration_move(); // Park nozzle away from calibration object
}
/**
* G425: Perform calibration with calibration object.
*
* B - Perform calibration of backlash only.
* T<extruder> - Perform calibration of toolhead only.
* V - Probe object and print position, error, backlash and hotend offset.
* U - Uncertainty, how far to start probe away from the object (mm)
*
* no args - Perform entire calibration sequence (backlash + position on all toolheads)
*/
void GcodeSuite::G425() {
#ifdef CALIBRATION_SCRIPT_PRE
GcodeSuite::process_subcommands_now_P(PSTR(CALIBRATION_SCRIPT_PRE));
#endif
if (homing_needed_error()) return;
TEMPORARY_BED_LEVELING_STATE(false);
SET_SOFT_ENDSTOP_LOOSE(true);
measurements_t m;
const float uncertainty = parser.floatval('U', CALIBRATION_MEASUREMENT_UNCERTAIN);
if (parser.seen_test('B'))
calibrate_backlash(m, uncertainty);
else if (parser.seen_test('T'))
calibrate_toolhead(m, uncertainty, parser.intval('T', active_extruder));
#if ENABLED(CALIBRATION_REPORTING)
else if (parser.seen('V')) {
probe_sides(m, uncertainty);
SERIAL_EOL();
report_measured_faces(m);
report_measured_center(m);
report_measured_backlash(m);
report_measured_nozzle_dimensions(m);
report_measured_positional_error(m);
#if HAS_HOTEND_OFFSET
normalize_hotend_offsets();
report_hotend_offsets();
#endif
}
#endif
else
calibrate_all();
SET_SOFT_ENDSTOP_LOOSE(false);
#ifdef CALIBRATION_SCRIPT_POST
GcodeSuite::process_subcommands_now_P(PSTR(CALIBRATION_SCRIPT_POST));
#endif
}
#endif // CALIBRATION_GCODE

View File

@@ -0,0 +1,358 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* G76_M871.cpp - Temperature calibration/compensation for z-probing
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PROBE_TEMP_COMPENSATION)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../module/temperature.h"
#include "../../module/probe.h"
#include "../../feature/probe_temp_comp.h"
#include "../../lcd/marlinui.h"
/**
* G76: calibrate probe and/or bed temperature offsets
* Notes:
* - When calibrating probe, bed temperature is held constant.
* Compensation values are deltas to first probe measurement at probe temp. = 30°C.
* - When calibrating bed, probe temperature is held constant.
* Compensation values are deltas to first probe measurement at bed temp. = 60°C.
* - The hotend will not be heated at any time.
* - On my Průša MK3S clone I put a piece of paper between the probe and the hotend
* so the hotend fan would not cool my probe constantly. Alternatively you could just
* make sure the fan is not running while running the calibration process.
*
* Probe calibration:
* - Moves probe to cooldown point.
* - Heats up bed to 100°C.
* - Moves probe to probing point (1mm above heatbed).
* - Waits until probe reaches target temperature (30°C).
* - Does a z-probing (=base value) and increases target temperature by 5°C.
* - Waits until probe reaches increased target temperature.
* - Does a z-probing (delta to base value will be a compensation value) and increases target temperature by 5°C.
* - Repeats last two steps until max. temperature reached or timeout (i.e. probe does not heat up any further).
* - Compensation values of higher temperatures will be extrapolated (using linear regression first).
* While this is not exact by any means it is still better than simply using the last compensation value.
*
* Bed calibration:
* - Moves probe to cooldown point.
* - Heats up bed to 60°C.
* - Moves probe to probing point (1mm above heatbed).
* - Waits until probe reaches target temperature (30°C).
* - Does a z-probing (=base value) and increases bed temperature by 5°C.
* - Moves probe to cooldown point.
* - Waits until probe is below 30°C and bed has reached target temperature.
* - Moves probe to probing point and waits until it reaches target temperature (30°C).
* - Does a z-probing (delta to base value will be a compensation value) and increases bed temperature by 5°C.
* - Repeats last four points until max. bed temperature reached (110°C) or timeout.
* - Compensation values of higher temperatures will be extrapolated (using linear regression first).
* While this is not exact by any means it is still better than simply using the last compensation value.
*
* G76 [B | P]
* - no flag - Both calibration procedures will be run.
* - `B` - Run bed temperature calibration.
* - `P` - Run probe temperature calibration.
*/
static void say_waiting_for() { SERIAL_ECHOPGM("Waiting for "); }
static void say_waiting_for_probe_heating() { say_waiting_for(); SERIAL_ECHOLNPGM("probe heating."); }
static void say_successfully_calibrated() { SERIAL_ECHOPGM("Successfully calibrated"); }
static void say_failed_to_calibrate() { SERIAL_ECHOPGM("!Failed to calibrate"); }
void GcodeSuite::G76() {
// Check if heated bed is available and z-homing is done with probe
#if TEMP_SENSOR_BED == 0 || !(HOMING_Z_WITH_PROBE)
return;
#endif
auto report_temps = [](millis_t &ntr, millis_t timeout=0) {
idle_no_sleep();
const millis_t ms = millis();
if (ELAPSED(ms, ntr)) {
ntr = ms + 1000;
thermalManager.print_heater_states(active_extruder);
}
return (timeout && ELAPSED(ms, timeout));
};
auto wait_for_temps = [&](const celsius_t tb, const celsius_t tp, millis_t &ntr, const millis_t timeout=0) {
say_waiting_for(); SERIAL_ECHOLNPGM("bed and probe temperature.");
while (thermalManager.wholeDegBed() != tb || thermalManager.wholeDegProbe() > tp)
if (report_temps(ntr, timeout)) return true;
return false;
};
auto g76_probe = [](const TempSensorID sid, celsius_t &targ, const xy_pos_t &nozpos) {
do_z_clearance(5.0); // Raise nozzle before probing
const float measured_z = probe.probe_at_point(nozpos, PROBE_PT_STOW, 0, false); // verbose=0, probe_relative=false
if (isnan(measured_z))
SERIAL_ECHOLNPGM("!Received NAN. Aborting.");
else {
SERIAL_ECHOLNPAIR_F("Measured: ", measured_z);
if (targ == cali_info_init[sid].start_temp)
temp_comp.prepare_new_calibration(measured_z);
else
temp_comp.push_back_new_measurement(sid, measured_z);
targ += cali_info_init[sid].temp_res;
}
return measured_z;
};
#if ENABLED(BLTOUCH)
// Make sure any BLTouch error condition is cleared
bltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY);
set_bltouch_deployed(false);
#endif
bool do_bed_cal = parser.boolval('B'), do_probe_cal = parser.boolval('P');
if (!do_bed_cal && !do_probe_cal) do_bed_cal = do_probe_cal = true;
// Synchronize with planner
planner.synchronize();
const xyz_pos_t parkpos = temp_comp.park_point,
probe_pos_xyz = xyz_pos_t(temp_comp.measure_point) + xyz_pos_t({ 0.0f, 0.0f, PTC_PROBE_HEATING_OFFSET }),
noz_pos_xyz = probe_pos_xyz - probe.offset_xy; // Nozzle position based on probe position
if (do_bed_cal || do_probe_cal) {
// Ensure park position is reachable
bool reachable = position_is_reachable(parkpos) || WITHIN(parkpos.z, Z_MIN_POS - fslop, Z_MAX_POS + fslop);
if (!reachable)
SERIAL_ECHOLNPGM("!Park");
else {
// Ensure probe position is reachable
reachable = probe.can_reach(probe_pos_xyz);
if (!reachable) SERIAL_ECHOLNPGM("!Probe");
}
if (!reachable) {
SERIAL_ECHOLNPGM(" position unreachable - aborting.");
return;
}
process_subcommands_now_P(G28_STR);
}
remember_feedrate_scaling_off();
/******************************************
* Calibrate bed temperature offsets
******************************************/
// Report temperatures every second and handle heating timeouts
millis_t next_temp_report = millis() + 1000;
auto report_targets = [&](const celsius_t tb, const celsius_t tp) {
SERIAL_ECHOLNPAIR("Target Bed:", tb, " Probe:", tp);
};
if (do_bed_cal) {
celsius_t target_bed = cali_info_init[TSI_BED].start_temp,
target_probe = temp_comp.bed_calib_probe_temp;
say_waiting_for(); SERIAL_ECHOLNPGM(" cooling.");
while (thermalManager.wholeDegBed() > target_bed || thermalManager.wholeDegProbe() > target_probe)
report_temps(next_temp_report);
// Disable leveling so it won't mess with us
TERN_(HAS_LEVELING, set_bed_leveling_enabled(false));
for (;;) {
thermalManager.setTargetBed(target_bed);
report_targets(target_bed, target_probe);
// Park nozzle
do_blocking_move_to(parkpos);
// Wait for heatbed to reach target temp and probe to cool below target temp
if (wait_for_temps(target_bed, target_probe, next_temp_report, millis() + MIN_TO_MS(15))) {
SERIAL_ECHOLNPGM("!Bed heating timeout.");
break;
}
// Move the nozzle to the probing point and wait for the probe to reach target temp
do_blocking_move_to(noz_pos_xyz);
say_waiting_for_probe_heating();
SERIAL_EOL();
while (thermalManager.wholeDegProbe() < target_probe)
report_temps(next_temp_report);
const float measured_z = g76_probe(TSI_BED, target_bed, noz_pos_xyz);
if (isnan(measured_z) || target_bed > (BED_MAX_TARGET)) break;
}
SERIAL_ECHOLNPAIR("Retrieved measurements: ", temp_comp.get_index());
if (temp_comp.finish_calibration(TSI_BED)) {
say_successfully_calibrated();
SERIAL_ECHOLNPGM(" bed.");
}
else {
say_failed_to_calibrate();
SERIAL_ECHOLNPGM(" bed. Values reset.");
}
// Cleanup
thermalManager.setTargetBed(0);
TERN_(HAS_LEVELING, set_bed_leveling_enabled(true));
} // do_bed_cal
/********************************************
* Calibrate probe temperature offsets
********************************************/
if (do_probe_cal) {
// Park nozzle
do_blocking_move_to(parkpos);
// Initialize temperatures
const celsius_t target_bed = temp_comp.probe_calib_bed_temp;
thermalManager.setTargetBed(target_bed);
celsius_t target_probe = cali_info_init[TSI_PROBE].start_temp;
report_targets(target_bed, target_probe);
// Wait for heatbed to reach target temp and probe to cool below target temp
wait_for_temps(target_bed, target_probe, next_temp_report);
// Disable leveling so it won't mess with us
TERN_(HAS_LEVELING, set_bed_leveling_enabled(false));
bool timeout = false;
for (;;) {
// Move probe to probing point and wait for it to reach target temperature
do_blocking_move_to(noz_pos_xyz);
say_waiting_for_probe_heating();
SERIAL_ECHOLNPAIR(" Bed:", target_bed, " Probe:", target_probe);
const millis_t probe_timeout_ms = millis() + SEC_TO_MS(900UL);
while (thermalManager.degProbe() < target_probe) {
if (report_temps(next_temp_report, probe_timeout_ms)) {
SERIAL_ECHOLNPGM("!Probe heating timed out.");
timeout = true;
break;
}
}
if (timeout) break;
const float measured_z = g76_probe(TSI_PROBE, target_probe, noz_pos_xyz);
if (isnan(measured_z) || target_probe > cali_info_init[TSI_PROBE].end_temp) break;
}
SERIAL_ECHOLNPAIR("Retrieved measurements: ", temp_comp.get_index());
if (temp_comp.finish_calibration(TSI_PROBE))
say_successfully_calibrated();
else
say_failed_to_calibrate();
SERIAL_ECHOLNPGM(" probe.");
// Cleanup
thermalManager.setTargetBed(0);
TERN_(HAS_LEVELING, set_bed_leveling_enabled(true));
SERIAL_ECHOLNPGM("Final compensation values:");
temp_comp.print_offsets();
} // do_probe_cal
restore_feedrate_and_scaling();
}
/**
* M871: Report / reset temperature compensation offsets.
* Note: This does not affect values in EEPROM until M500.
*
* M871 [ R | B | P | E ]
*
* No Parameters - Print current offset values.
*
* Select only one of these flags:
* R - Reset all offsets to zero (i.e., disable compensation).
* B - Manually set offset for bed
* P - Manually set offset for probe
* E - Manually set offset for extruder
*
* With B, P, or E:
* I[index] - Index in the array
* V[value] - Adjustment in µm
*/
void GcodeSuite::M871() {
if (parser.seen('R')) {
// Reset z-probe offsets to factory defaults
temp_comp.clear_all_offsets();
SERIAL_ECHOLNPGM("Offsets reset to default.");
}
else if (parser.seen("BPE")) {
if (!parser.seenval('V')) return;
const int16_t offset_val = parser.value_int();
if (!parser.seenval('I')) return;
const int16_t idx = parser.value_int();
const TempSensorID mod = (parser.seen('B') ? TSI_BED :
#if ENABLED(USE_TEMP_EXT_COMPENSATION)
parser.seen('E') ? TSI_EXT :
#endif
TSI_PROBE
);
if (idx > 0 && temp_comp.set_offset(mod, idx - 1, offset_val))
SERIAL_ECHOLNPAIR("Set value: ", offset_val);
else
SERIAL_ECHOLNPGM("!Invalid index. Failed to set value (note: value at index 0 is constant).");
}
else // Print current Z-probe adjustments. Note: Values in EEPROM might differ.
temp_comp.print_offsets();
}
/**
* M192: Wait for probe temperature sensor to reach a target
*
* Select only one of these flags:
* R - Wait for heating or cooling
* S - Wait only for heating
*/
void GcodeSuite::M192() {
if (DEBUGGING(DRYRUN)) return;
const bool no_wait_for_cooling = parser.seenval('S');
if (!no_wait_for_cooling && ! parser.seenval('R')) {
SERIAL_ERROR_MSG("No target temperature set.");
return;
}
const celsius_t target_temp = parser.value_celsius();
ui.set_status_P(thermalManager.isProbeBelowTemp(target_temp) ? GET_TEXT(MSG_PROBE_HEATING) : GET_TEXT(MSG_PROBE_COOLING));
thermalManager.wait_for_probe(target_temp, no_wait_for_cooling);
}
#endif // PROBE_TEMP_COMPENSATION

View File

@@ -0,0 +1,373 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(M100_FREE_MEMORY_WATCHER)
#include "../gcode.h"
#include "../queue.h"
#include "../../libs/hex_print.h"
#include "../../MarlinCore.h" // for idle()
/**
* M100 Free Memory Watcher
*
* This code watches the free memory block between the bottom of the heap and the top of the stack.
* This memory block is initialized and watched via the M100 command.
*
* M100 I Initializes the free memory block and prints vitals statistics about the area
*
* M100 F Identifies how much of the free memory block remains free and unused. It also
* detects and reports any corruption within the free memory block that may have
* happened due to errant firmware.
*
* M100 D Does a hex display of the free memory block along with a flag for any errant
* data that does not match the expected value.
*
* M100 C x Corrupts x locations within the free memory block. This is useful to check the
* correctness of the M100 F and M100 D commands.
*
* Also, there are two support functions that can be called from a developer's C code.
*
* uint16_t check_for_free_memory_corruption(PGM_P const free_memory_start);
* void M100_dump_routine(PGM_P const title, const char * const start, const uintptr_t size);
*
* Initial version by Roxy-3D
*/
#define M100_FREE_MEMORY_DUMPER // Enable for the `M100 D` Dump sub-command
#define M100_FREE_MEMORY_CORRUPTOR // Enable for the `M100 C` Corrupt sub-command
#define TEST_BYTE ((char) 0xE5)
#if EITHER(__AVR__, IS_32BIT_TEENSY)
extern char __bss_end;
char *end_bss = &__bss_end,
*free_memory_start = end_bss, *free_memory_end = 0,
*stacklimit = 0, *heaplimit = 0;
#define MEMORY_END_CORRECTION 0
#elif defined(TARGET_LPC1768)
extern char __bss_end__, __StackLimit, __HeapLimit;
char *end_bss = &__bss_end__,
*stacklimit = &__StackLimit,
*heaplimit = &__HeapLimit;
#define MEMORY_END_CORRECTION 0x200
char *free_memory_start = heaplimit,
*free_memory_end = stacklimit - MEMORY_END_CORRECTION;
#elif defined(__SAM3X8E__)
extern char _ebss;
char *end_bss = &_ebss,
*free_memory_start = end_bss,
*free_memory_end = 0,
*stacklimit = 0,
*heaplimit = 0;
#define MEMORY_END_CORRECTION 0x10000 // need to stay well below 0x20080000 or M100 F crashes
#elif defined(__SAMD51__)
extern unsigned int __bss_end__, __StackLimit, __HeapLimit;
extern "C" void * _sbrk(int incr);
void *end_bss = &__bss_end__,
*stacklimit = &__StackLimit,
*heaplimit = &__HeapLimit;
#define MEMORY_END_CORRECTION 0x400
char *free_memory_start = (char *)_sbrk(0) + 0x200, // Leave some heap space
*free_memory_end = (char *)stacklimit - MEMORY_END_CORRECTION;
#else
#error "M100 - unsupported CPU"
#endif
//
// Utility functions
//
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wreturn-local-addr"
// Location of a variable in its stack frame.
// The returned address will be above the stack (after it returns).
char *top_of_stack() {
char x;
return &x + 1; // x is pulled on return;
}
#pragma GCC diagnostic pop
// Count the number of test bytes at the specified location.
inline int32_t count_test_bytes(const char * const start_free_memory) {
for (uint32_t i = 0; i < 32000; i++)
if (char(start_free_memory[i]) != TEST_BYTE)
return i - 1;
return -1;
}
//
// M100 sub-commands
//
#if ENABLED(M100_FREE_MEMORY_DUMPER)
/**
* M100 D
* Dump the free memory block from brkval to the stack pointer.
* malloc() eats memory from the start of the block and the stack grows
* up from the bottom of the block. Solid test bytes indicate nothing has
* used that memory yet. There should not be anything but test bytes within
* the block. If so, it may indicate memory corruption due to a bad pointer.
* Unexpected bytes are flagged in the right column.
*/
void dump_free_memory(char *start_free_memory, char *end_free_memory) {
//
// Start and end the dump on a nice 16 byte boundary
// (even though the values are not 16-byte aligned).
//
start_free_memory = (char*)(uintptr_t(uint32_t(start_free_memory) & ~0xFUL)); // Align to 16-byte boundary
end_free_memory = (char*)(uintptr_t(uint32_t(end_free_memory) | 0xFUL)); // Align end_free_memory to the 15th byte (at or above end_free_memory)
// Dump command main loop
while (start_free_memory < end_free_memory) {
print_hex_address(start_free_memory); // Print the address
SERIAL_CHAR(':');
LOOP_L_N(i, 16) { // and 16 data bytes
if (i == 8) SERIAL_CHAR('-');
print_hex_byte(start_free_memory[i]);
SERIAL_CHAR(' ');
}
serial_delay(25);
SERIAL_CHAR('|'); // Point out non test bytes
LOOP_L_N(i, 16) {
char ccc = (char)start_free_memory[i]; // cast to char before automatically casting to char on assignment, in case the compiler is broken
ccc = (ccc == TEST_BYTE) ? ' ' : '?';
SERIAL_CHAR(ccc);
}
SERIAL_EOL();
start_free_memory += 16;
serial_delay(25);
idle();
}
}
void M100_dump_routine(PGM_P const title, const char * const start, const uintptr_t size) {
SERIAL_ECHOLNPGM_P(title);
//
// Round the start and end locations to produce full lines of output
//
const char * const end = start + size - 1;
dump_free_memory(
(char*)(uintptr_t(uint32_t(start) & ~0xFUL)), // Align to 16-byte boundary
(char*)(uintptr_t(uint32_t(end) | 0xFUL)) // Align end_free_memory to the 15th byte (at or above end_free_memory)
);
}
#endif // M100_FREE_MEMORY_DUMPER
inline int check_for_free_memory_corruption(PGM_P const title) {
SERIAL_ECHOPGM_P(title);
char *start_free_memory = free_memory_start, *end_free_memory = free_memory_end;
int n = end_free_memory - start_free_memory;
SERIAL_ECHOLNPAIR("\nfmc() n=", n,
"\nfree_memory_start=", hex_address(free_memory_start),
" end=", hex_address(end_free_memory));
if (end_free_memory < start_free_memory) {
SERIAL_ECHOPGM(" end_free_memory < Heap ");
//SET_INPUT_PULLUP(63); // if the developer has a switch wired up to their controller board
//safe_delay(5); // this code can be enabled to pause the display as soon as the
//while ( READ(63)) // malfunction is detected. It is currently defaulting to a switch
// idle(); // being on pin-63 which is unassigend and available on most controller
//safe_delay(20); // boards.
//while ( !READ(63))
// idle();
serial_delay(20);
#if ENABLED(M100_FREE_MEMORY_DUMPER)
M100_dump_routine(PSTR(" Memory corruption detected with end_free_memory<Heap\n"), (const char*)0x1B80, 0x0680);
#endif
}
// Scan through the range looking for the biggest block of 0xE5's we can find
int block_cnt = 0;
for (int i = 0; i < n; i++) {
if (start_free_memory[i] == TEST_BYTE) {
int32_t j = count_test_bytes(start_free_memory + i);
if (j > 8) {
//SERIAL_ECHOPAIR("Found ", j);
//SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(start_free_memory + i));
i += j;
block_cnt++;
SERIAL_ECHOLNPAIR(" (", block_cnt, ") found=", j);
}
}
}
SERIAL_ECHOPAIR(" block_found=", block_cnt);
if (block_cnt != 1)
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
if (block_cnt == 0) // Make sure the special case of no free blocks shows up as an
block_cnt = -1; // error to the calling code!
SERIAL_ECHOPGM(" return=");
if (block_cnt == 1) {
SERIAL_CHAR('0'); // If the block_cnt is 1, nothing has broken up the free memory
SERIAL_EOL(); // area and it is appropriate to say 'no corruption'.
return 0;
}
SERIAL_ECHOLNPGM("true");
return block_cnt;
}
/**
* M100 F
* Return the number of free bytes in the memory pool,
* with other vital statistics defining the pool.
*/
inline void free_memory_pool_report(char * const start_free_memory, const int32_t size) {
int32_t max_cnt = -1, block_cnt = 0;
char *max_addr = nullptr;
// Find the longest block of test bytes in the buffer
for (int32_t i = 0; i < size; i++) {
char *addr = start_free_memory + i;
if (*addr == TEST_BYTE) {
const int32_t j = count_test_bytes(addr);
if (j > 8) {
SERIAL_ECHOLNPAIR("Found ", j, " bytes free at ", hex_address(addr));
if (j > max_cnt) {
max_cnt = j;
max_addr = addr;
}
i += j;
block_cnt++;
}
}
}
if (block_cnt > 1) SERIAL_ECHOLNPAIR(
"\nMemory Corruption detected in free memory area."
"\nLargest free block is ", max_cnt, " bytes at ", hex_address(max_addr)
);
SERIAL_ECHOLNPAIR("check_for_free_memory_corruption() = ", check_for_free_memory_corruption(PSTR("M100 F ")));
}
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
/**
* M100 C<num>
* Corrupt <num> locations in the free memory pool and report the corrupt addresses.
* This is useful to check the correctness of the M100 D and the M100 F commands.
*/
inline void corrupt_free_memory(char *start_free_memory, const uintptr_t size) {
start_free_memory += 8;
const uint32_t near_top = top_of_stack() - start_free_memory - 250, // -250 to avoid interrupt activity that's altered the stack.
j = near_top / (size + 1);
SERIAL_ECHOLNPGM("Corrupting free memory block.");
for (uint32_t i = 1; i <= size; i++) {
char * const addr = start_free_memory + i * j;
*addr = i;
SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr));
}
SERIAL_EOL();
}
#endif // M100_FREE_MEMORY_CORRUPTOR
/**
* M100 I
* Init memory for the M100 tests. (Automatically applied on the first M100.)
*/
inline void init_free_memory(char *start_free_memory, int32_t size) {
SERIAL_ECHOLNPGM("Initializing free memory block.\n\n");
size -= 250; // -250 to avoid interrupt activity that's altered the stack.
if (size < 0) {
SERIAL_ECHOLNPGM("Unable to initialize.\n");
return;
}
start_free_memory += 8; // move a few bytes away from the heap just because we
// don't want to be altering memory that close to it.
memset(start_free_memory, TEST_BYTE, size);
SERIAL_ECHO(size);
SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
for (int32_t i = 0; i < size; i++) {
if (start_free_memory[i] != TEST_BYTE) {
SERIAL_ECHOPAIR("? address : ", hex_address(start_free_memory + i));
SERIAL_ECHOLNPAIR("=", hex_byte(start_free_memory[i]));
SERIAL_EOL();
}
}
}
/**
* M100: Free Memory Check
*/
void GcodeSuite::M100() {
char *sp = top_of_stack();
if (!free_memory_end) free_memory_end = sp - MEMORY_END_CORRECTION;
SERIAL_ECHOPAIR("\nbss_end : ", hex_address(end_bss));
if (heaplimit) SERIAL_ECHOPAIR("\n__heaplimit : ", hex_address(heaplimit));
SERIAL_ECHOPAIR("\nfree_memory_start : ", hex_address(free_memory_start));
if (stacklimit) SERIAL_ECHOPAIR("\n__stacklimit : ", hex_address(stacklimit));
SERIAL_ECHOPAIR("\nfree_memory_end : ", hex_address(free_memory_end));
if (MEMORY_END_CORRECTION)
SERIAL_ECHOPAIR("\nMEMORY_END_CORRECTION : ", MEMORY_END_CORRECTION);
SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_address(sp));
// Always init on the first invocation of M100
static bool m100_not_initialized = true;
if (m100_not_initialized || parser.seen('I')) {
m100_not_initialized = false;
init_free_memory(free_memory_start, free_memory_end - free_memory_start);
}
#if ENABLED(M100_FREE_MEMORY_DUMPER)
if (parser.seen('D'))
return dump_free_memory(free_memory_start, free_memory_end);
#endif
if (parser.seen('F'))
return free_memory_pool_report(free_memory_start, free_memory_end - free_memory_start);
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
if (parser.seen('C'))
return corrupt_free_memory(free_memory_start, parser.value_int());
#endif
}
#endif // M100_FREE_MEMORY_WATCHER

View File

@@ -0,0 +1,39 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER)
#include "../gcode.h"
#include "../../module/planner.h"
#include "../../feature/closedloop.h"
void GcodeSuite::M12() {
planner.synchronize();
if (parser.seenval('S'))
closedloop.set(parser.value_int()); // Force a CLC set
}
#endif

View File

@@ -0,0 +1,116 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(BACKLASH_GCODE)
#include "../../feature/backlash.h"
#include "../../module/planner.h"
#include "../gcode.h"
/**
* M425: Enable and tune backlash correction.
*
* F<fraction> Enable/disable/fade-out backlash correction (0.0 to 1.0)
* S<smoothing_mm> Distance over which backlash correction is spread
* X<distance_mm> Set the backlash distance on X (0 to disable)
* Y<distance_mm> ... on Y
* Z<distance_mm> ... on Z
* X If a backlash measurement was done on X, copy that value
* Y ... on Y
* Z ... on Z
*
* Type M425 without any arguments to show active values.
*/
void GcodeSuite::M425() {
bool noArgs = true;
auto axis_can_calibrate = [](const uint8_t a) {
switch (a) {
default: return false;
LINEAR_AXIS_CODE(
case X_AXIS: return AXIS_CAN_CALIBRATE(X),
case Y_AXIS: return AXIS_CAN_CALIBRATE(Y),
case Z_AXIS: return AXIS_CAN_CALIBRATE(Z),
case I_AXIS: return AXIS_CAN_CALIBRATE(I),
case J_AXIS: return AXIS_CAN_CALIBRATE(J),
case K_AXIS: return AXIS_CAN_CALIBRATE(K),
);
}
};
LOOP_LINEAR_AXES(a) {
if (axis_can_calibrate(a) && parser.seen(AXIS_CHAR(a))) {
planner.synchronize();
backlash.distance_mm[a] = parser.has_value() ? parser.value_linear_units() : backlash.get_measurement(AxisEnum(a));
noArgs = false;
}
}
if (parser.seen('F')) {
planner.synchronize();
backlash.set_correction(parser.value_float());
noArgs = false;
}
#ifdef BACKLASH_SMOOTHING_MM
if (parser.seen('S')) {
planner.synchronize();
backlash.smoothing_mm = parser.value_linear_units();
noArgs = false;
}
#endif
if (noArgs) {
SERIAL_ECHOPGM("Backlash Correction ");
if (!backlash.correction) SERIAL_ECHOPGM("in");
SERIAL_ECHOLNPGM("active:");
SERIAL_ECHOLNPAIR(" Correction Amount/Fade-out: F", backlash.get_correction(), " (F1.0 = full, F0.0 = none)");
SERIAL_ECHOPGM(" Backlash Distance (mm): ");
LOOP_LINEAR_AXES(a) if (axis_can_calibrate(a)) {
SERIAL_CHAR(' ', AXIS_CHAR(a));
SERIAL_ECHO(backlash.distance_mm[a]);
SERIAL_EOL();
}
#ifdef BACKLASH_SMOOTHING_MM
SERIAL_ECHOLNPAIR(" Smoothing (mm): S", backlash.smoothing_mm);
#endif
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
SERIAL_ECHOPGM(" Average measured backlash (mm):");
if (backlash.has_any_measurement()) {
LOOP_LINEAR_AXES(a) if (axis_can_calibrate(a) && backlash.has_measurement(AxisEnum(a))) {
SERIAL_CHAR(' ', AXIS_CHAR(a));
SERIAL_ECHO(backlash.get_measurement(AxisEnum(a)));
}
}
else
SERIAL_ECHOPGM(" (Not yet measured)");
SERIAL_EOL();
#endif
}
}
#endif // BACKLASH_GCODE

View File

@@ -0,0 +1,275 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/probe.h"
#include "../../lcd/marlinui.h"
#include "../../feature/bedlevel/bedlevel.h"
#if HAS_LEVELING
#include "../../module/planner.h"
#endif
/**
* M48: Z probe repeatability measurement function.
*
* Usage:
* M48 <P#> <X#> <Y#> <V#> <E> <L#> <S>
* P = Number of sampled points (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage Z probe for each reading
* L = Number of legs of movement before probe
* S = Schizoid (Or Star if you prefer)
*
* This function requires the machine to be homed before invocation.
*/
void GcodeSuite::M48() {
if (homing_needed_error()) return;
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
return;
}
if (verbose_level > 0)
SERIAL_ECHOLNPGM("M48 Z-Probe Repeatability Test");
const int8_t n_samples = parser.byteval('P', 10);
if (!WITHIN(n_samples, 4, 50)) {
SERIAL_ECHOLNPGM("?Sample size not plausible (4-50).");
return;
}
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
// Test at the current position by default, overridden by X and Y
const xy_pos_t test_position = {
parser.linearval('X', current_position.x + probe.offset_xy.x), // If no X use the probe's current X position
parser.linearval('Y', current_position.y + probe.offset_xy.y) // If no Y, ditto
};
if (!probe.can_reach(test_position)) {
ui.set_status_P(GET_TEXT(MSG_M48_OUT_OF_BOUNDS), 99);
SERIAL_ECHOLNPGM("? (X,Y) out of bounds.");
return;
}
// Get the number of leg moves per test-point
bool seen_L = parser.seen('L');
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
if (n_legs > 15) {
SERIAL_ECHOLNPGM("?Legs of movement implausible (0-15).");
return;
}
if (n_legs == 1) n_legs = 2;
// Schizoid motion as an optional stress-test
const bool schizoid_flag = parser.boolval('S');
if (schizoid_flag && !seen_L) n_legs = 7;
if (verbose_level > 2)
SERIAL_ECHOLNPGM("Positioning the probe...");
// Always disable Bed Level correction before probing...
#if HAS_LEVELING
const bool was_enabled = planner.leveling_active;
set_bed_leveling_enabled(false);
#endif
// Work with reasonable feedrates
remember_feedrate_scaling_off();
// Working variables
float mean = 0.0, // The average of all points so far, used to calculate deviation
sigma = 0.0, // Standard deviation of all points so far
min = 99999.9, // Smallest value sampled so far
max = -99999.9, // Largest value sampled so far
sample_set[n_samples]; // Storage for sampled values
auto dev_report = [](const bool verbose, const_float_t mean, const_float_t sigma, const_float_t min, const_float_t max, const bool final=false) {
if (verbose) {
SERIAL_ECHOPAIR_F("Mean: ", mean, 6);
if (!final) SERIAL_ECHOPAIR_F(" Sigma: ", sigma, 6);
SERIAL_ECHOPAIR_F(" Min: ", min, 3);
SERIAL_ECHOPAIR_F(" Max: ", max, 3);
SERIAL_ECHOPAIR_F(" Range: ", max-min, 3);
if (final) SERIAL_EOL();
}
if (final) {
SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6);
SERIAL_EOL();
}
};
// Move to the first point, deploy, and probe
const float t = probe.probe_at_point(test_position, raise_after, verbose_level);
bool probing_good = !isnan(t);
if (probing_good) {
randomSeed(millis());
float sample_sum = 0.0;
LOOP_L_N(n, n_samples) {
#if HAS_STATUS_MESSAGE
// Display M48 progress in the status bar
ui.status_printf_P(0, PSTR(S_FMT ": %d/%d"), GET_TEXT(MSG_M48_POINT), int(n + 1), int(n_samples));
#endif
// When there are "legs" of movement move around the point before probing
if (n_legs) {
// Pick a random direction, starting angle, and radius
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
float angle = random(0, 360);
const float radius = random(
#if ENABLED(DELTA)
int(0.1250000000 * (DELTA_PRINTABLE_RADIUS)),
int(0.3333333333 * (DELTA_PRINTABLE_RADIUS))
#else
int(5), int(0.125 * _MIN(X_BED_SIZE, Y_BED_SIZE))
#endif
);
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Start radius:", radius, " angle:", angle, " dir:");
if (dir > 0) SERIAL_CHAR('C');
SERIAL_ECHOLNPGM("CW");
}
// Move from leg to leg in rapid succession
LOOP_L_N(l, n_legs - 1) {
// Move some distance around the perimeter
float delta_angle;
if (schizoid_flag) {
// The points of a 5 point star are 72 degrees apart.
// Skip a point and go to the next one on the star.
delta_angle = dir * 2.0 * 72.0;
}
else {
// Just move further along the perimeter.
delta_angle = dir * (float)random(25, 45);
}
angle += delta_angle;
// Trig functions work without clamping, but just to be safe...
while (angle > 360.0) angle -= 360.0;
while (angle < 0.0) angle += 360.0;
// Choose the next position as an offset to chosen test position
const xy_pos_t noz_pos = test_position - probe.offset_xy;
xy_pos_t next_pos = {
noz_pos.x + float(cos(RADIANS(angle))) * radius,
noz_pos.y + float(sin(RADIANS(angle))) * radius
};
#if ENABLED(DELTA)
// If the probe can't reach the point on a round bed...
// Simply scale the numbers to bring them closer to origin.
while (!probe.can_reach(next_pos)) {
next_pos *= 0.8f;
if (verbose_level > 3)
SERIAL_ECHOLNPAIR_P(PSTR("Moving inward: X"), next_pos.x, SP_Y_STR, next_pos.y);
}
#elif HAS_ENDSTOPS
// For a rectangular bed just keep the probe in bounds
LIMIT(next_pos.x, X_MIN_POS, X_MAX_POS);
LIMIT(next_pos.y, Y_MIN_POS, Y_MAX_POS);
#endif
if (verbose_level > 3)
SERIAL_ECHOLNPAIR_P(PSTR("Going to: X"), next_pos.x, SP_Y_STR, next_pos.y);
do_blocking_move_to_xy(next_pos);
} // n_legs loop
} // n_legs
// Probe a single point
const float pz = probe.probe_at_point(test_position, raise_after, 0);
// Break the loop if the probe fails
probing_good = !isnan(pz);
if (!probing_good) break;
// Store the new sample
sample_set[n] = pz;
// Keep track of the largest and smallest samples
NOMORE(min, pz);
NOLESS(max, pz);
// Get the mean value of all samples thus far
sample_sum += pz;
mean = sample_sum / (n + 1);
// Calculate the standard deviation so far.
// The value after the last sample will be the final output.
float dev_sum = 0.0;
LOOP_LE_N(j, n) dev_sum += sq(sample_set[j] - mean);
sigma = SQRT(dev_sum / (n + 1));
if (verbose_level > 1) {
SERIAL_ECHO(n + 1);
SERIAL_ECHOPAIR(" of ", n_samples);
SERIAL_ECHOPAIR_F(": z: ", pz, 3);
SERIAL_CHAR(' ');
dev_report(verbose_level > 2, mean, sigma, min, max);
SERIAL_EOL();
}
} // n_samples loop
}
probe.stow();
if (probing_good) {
SERIAL_ECHOLNPGM("Finished!");
dev_report(verbose_level > 0, mean, sigma, min, max, true);
#if HAS_STATUS_MESSAGE
// Display M48 results in the status bar
char sigma_str[8];
ui.status_printf_P(0, PSTR(S_FMT ": %s"), GET_TEXT(MSG_M48_DEVIATION), dtostrf(sigma, 2, 6, sigma_str));
#endif
}
restore_feedrate_and_scaling();
// Re-enable bed level correction if it had been on
TERN_(HAS_LEVELING, set_bed_leveling_enabled(was_enabled));
report_current_position();
}
#endif // Z_MIN_PROBE_REPEATABILITY_TEST

View File

@@ -0,0 +1,112 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if IS_KINEMATIC
#include "../gcode.h"
#include "../../module/motion.h"
#if ENABLED(DELTA)
#include "../../module/delta.h"
/**
* M665: Set delta configurations
*
* H = delta height
* L = diagonal rod
* R = delta radius
* S = segments per second
* X = Alpha (Tower 1) angle trim
* Y = Beta (Tower 2) angle trim
* Z = Gamma (Tower 3) angle trim
* A = Alpha (Tower 1) diagonal rod trim
* B = Beta (Tower 2) diagonal rod trim
* C = Gamma (Tower 3) diagonal rod trim
*/
void GcodeSuite::M665() {
if (parser.seenval('H')) delta_height = parser.value_linear_units();
if (parser.seenval('L')) delta_diagonal_rod = parser.value_linear_units();
if (parser.seenval('R')) delta_radius = parser.value_linear_units();
if (parser.seenval('S')) segments_per_second = parser.value_float();
if (parser.seenval('X')) delta_tower_angle_trim.a = parser.value_float();
if (parser.seenval('Y')) delta_tower_angle_trim.b = parser.value_float();
if (parser.seenval('Z')) delta_tower_angle_trim.c = parser.value_float();
if (parser.seenval('A')) delta_diagonal_rod_trim.a = parser.value_float();
if (parser.seenval('B')) delta_diagonal_rod_trim.b = parser.value_float();
if (parser.seenval('C')) delta_diagonal_rod_trim.c = parser.value_float();
recalc_delta_settings();
}
#elif IS_SCARA
#include "../../module/scara.h"
/**
* M665: Set SCARA settings
*
* Parameters:
*
* S[segments-per-second] - Segments-per-second
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
* Z[z-offset] - Z offset, added to Z
*
* A, P, and X are all aliases for the shoulder angle
* B, T, and Y are all aliases for the elbow angle
*/
void GcodeSuite::M665() {
if (parser.seenval('S')) segments_per_second = parser.value_float();
#if HAS_SCARA_OFFSET
if (parser.seenval('Z')) scara_home_offset.z = parser.value_linear_units();
const bool hasA = parser.seenval('A'), hasP = parser.seenval('P'), hasX = parser.seenval('X');
const uint8_t sumAPX = hasA + hasP + hasX;
if (sumAPX) {
if (sumAPX == 1)
scara_home_offset.a = parser.value_float();
else {
SERIAL_ERROR_MSG("Only one of A, P, or X is allowed.");
return;
}
}
const bool hasB = parser.seenval('B'), hasT = parser.seenval('T'), hasY = parser.seenval('Y');
const uint8_t sumBTY = hasB + hasT + hasY;
if (sumBTY) {
if (sumBTY == 1)
scara_home_offset.b = parser.value_float();
else {
SERIAL_ERROR_MSG("Only one of B, T, or Y is allowed.");
return;
}
}
#endif // HAS_SCARA_OFFSET
}
#endif
#endif // IS_KINEMATIC

View File

@@ -0,0 +1,131 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(DELTA) || HAS_EXTRA_ENDSTOPS
#include "../gcode.h"
#if ENABLED(DELTA)
#include "../../module/delta.h"
#include "../../module/motion.h"
#else
#include "../../module/endstops.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
void M666_report(const bool forReplay=true) {
if (!forReplay) { SERIAL_ECHOLNPGM("; Endstop adjustment:"); SERIAL_ECHO_START(); }
#if ENABLED(DELTA)
SERIAL_ECHOLNPAIR_P(
PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
, SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
, SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
);
#else
SERIAL_ECHOPGM(" M666");
#if ENABLED(X_DUAL_ENDSTOPS)
SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
#endif
#if ENABLED(Z_MULTI_ENDSTOPS)
#if NUM_Z_STEPPER_DRIVERS >= 3
SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
if (!forReplay) SERIAL_ECHO_START();
SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
#if NUM_Z_STEPPER_DRIVERS >= 4
if (!forReplay) SERIAL_ECHO_START();
SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
#endif
#else
SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
#endif
#endif
#endif
}
#if ENABLED(DELTA)
/**
* M666: Set delta endstop adjustment
*/
void GcodeSuite::M666() {
DEBUG_SECTION(log_M666, "M666", DEBUGGING(LEVELING));
bool is_err = false, is_set = false;
LOOP_LINEAR_AXES(i) {
if (parser.seen(AXIS_CHAR(i))) {
is_set = true;
const float v = parser.value_linear_units();
if (v > 0)
is_err = true;
else {
delta_endstop_adj[i] = v;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("delta_endstop_adj[", AS_CHAR(AXIS_CHAR(i)), "] = ", v);
}
}
}
if (is_err) SERIAL_ECHOLNPAIR("?M666 offsets must be <= 0");
if (!is_set) M666_report();
}
#else
/**
* M666: Set Dual Endstops offsets for X, Y, and/or Z.
* With no parameters report current offsets.
*
* For Triple / Quad Z Endstops:
* Set Z2 Only: M666 S2 Z<offset>
* Set Z3 Only: M666 S3 Z<offset>
* Set Z4 Only: M666 S4 Z<offset>
* Set All: M666 Z<offset>
*/
void GcodeSuite::M666() {
#if ENABLED(X_DUAL_ENDSTOPS)
if (parser.seenval('X')) endstops.x2_endstop_adj = parser.value_linear_units();
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
if (parser.seenval('Y')) endstops.y2_endstop_adj = parser.value_linear_units();
#endif
#if ENABLED(Z_MULTI_ENDSTOPS)
if (parser.seenval('Z')) {
const float z_adj = parser.value_linear_units();
#if NUM_Z_STEPPER_DRIVERS == 2
endstops.z2_endstop_adj = z_adj;
#else
const int ind = parser.intval('S');
#define _SET_ZADJ(N) if (!ind || ind == N) endstops.z##N##_endstop_adj = z_adj;
REPEAT_S(2, INCREMENT(NUM_Z_STEPPER_DRIVERS), _SET_ZADJ)
#endif
}
#endif
if (!parser.seen("XYZ")) M666_report();
}
#endif // HAS_EXTRA_ENDSTOPS
#endif // DELTA || HAS_EXTRA_ENDSTOPS

View File

@@ -0,0 +1,106 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(SKEW_CORRECTION_GCODE)
#include "../gcode.h"
#include "../../module/planner.h"
/**
* M852: Get or set the machine skew factors. Reports current values with no arguments.
*
* S[xy_factor] - Alias for 'I'
* I[xy_factor] - New XY skew factor
* J[xz_factor] - New XZ skew factor
* K[yz_factor] - New YZ skew factor
*/
void GcodeSuite::M852() {
uint8_t ijk = 0, badval = 0, setval = 0;
if (parser.seen('I') || parser.seen('S')) {
++ijk;
const float value = parser.value_linear_units();
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
if (planner.skew_factor.xy != value) {
planner.skew_factor.xy = value;
++setval;
}
}
else
++badval;
}
#if ENABLED(SKEW_CORRECTION_FOR_Z)
if (parser.seen('J')) {
++ijk;
const float value = parser.value_linear_units();
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
if (planner.skew_factor.xz != value) {
planner.skew_factor.xz = value;
++setval;
}
}
else
++badval;
}
if (parser.seen('K')) {
++ijk;
const float value = parser.value_linear_units();
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
if (planner.skew_factor.yz != value) {
planner.skew_factor.yz = value;
++setval;
}
}
else
++badval;
}
#endif
if (badval)
SERIAL_ECHOLNPGM(STR_SKEW_MIN " " STRINGIFY(SKEW_FACTOR_MIN) " " STR_SKEW_MAX " " STRINGIFY(SKEW_FACTOR_MAX));
// When skew is changed the current position changes
if (setval) {
set_current_from_steppers_for_axis(ALL_AXES_ENUM);
sync_plan_position();
report_current_position();
}
if (!ijk) {
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Skew Factor");
SERIAL_ECHOPAIR_F(" XY: ", planner.skew_factor.xy, 6);
#if ENABLED(SKEW_CORRECTION_FOR_Z)
SERIAL_ECHOPAIR_F(" XZ: ", planner.skew_factor.xz, 6);
SERIAL_ECHOPAIR_F(" YZ: ", planner.skew_factor.yz, 6);
#endif
SERIAL_EOL();
}
}
#endif // SKEW_CORRECTION_GCODE

View File

@@ -0,0 +1,186 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../MarlinCore.h"
#include "../../module/planner.h"
#if DISABLED(NO_VOLUMETRICS)
/**
* M200: Set filament diameter and set E axis units to cubic units
*
* T<extruder> - Optional extruder number. Current extruder if omitted.
* D<linear> - Set filament diameter and enable. D0 disables volumetric.
* S<bool> - Turn volumetric ON or OFF.
* L<float> - Volumetric extruder limit (in mm^3/sec). L0 disables the limit.
*/
void GcodeSuite::M200() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
bool vol_enable = parser.volumetric_enabled,
can_enable = true;
if (parser.seenval('D')) {
const float dval = parser.value_linear_units();
if (dval) { // Set filament size for volumetric calculation
planner.set_filament_size(target_extruder, dval);
vol_enable = true; // Dn = enable for compatibility
}
else
can_enable = false; // D0 = disable for compatibility
}
// Enable or disable with S1 / S0
parser.volumetric_enabled = can_enable && parser.boolval('S', vol_enable);
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
if (parser.seenval('L')) {
// Set volumetric limit (in mm^3/sec)
const float lval = parser.value_float();
if (WITHIN(lval, 0, 20))
planner.set_volumetric_extruder_limit(target_extruder, lval);
else
SERIAL_ECHOLNPGM("?L value out of range (0-20).");
}
#endif
planner.calculate_volumetric_multipliers();
}
#endif // !NO_VOLUMETRICS
/**
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
*
* With multiple extruders use T to specify which one.
*/
void GcodeSuite::M201() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
#ifdef XY_FREQUENCY_LIMIT
if (parser.seenval('F')) planner.set_frequency_limit(parser.value_byte());
if (parser.seenval('G')) planner.xy_freq_min_speed_factor = constrain(parser.value_float(), 1, 100) / 100;
#endif
LOOP_LOGICAL_AXES(i) {
if (parser.seenval(axis_codes[i])) {
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
planner.set_max_acceleration(a, parser.value_axis_units((AxisEnum)a));
}
}
}
/**
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
*
* With multiple extruders use T to specify which one.
*/
void GcodeSuite::M203() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
LOOP_LOGICAL_AXES(i)
if (parser.seenval(axis_codes[i])) {
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
planner.set_max_feedrate(a, parser.value_axis_units((AxisEnum)a));
}
}
/**
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
*
* P = Printing moves
* R = Retract only (no X, Y, Z) moves
* T = Travel (non printing) moves
*/
void GcodeSuite::M204() {
if (!parser.seen("PRST")) {
SERIAL_ECHOPAIR("Acceleration: P", planner.settings.acceleration);
SERIAL_ECHOPAIR(" R", planner.settings.retract_acceleration);
SERIAL_ECHOLNPAIR_P(SP_T_STR, planner.settings.travel_acceleration);
}
else {
//planner.synchronize();
// 'S' for legacy compatibility. Should NOT BE USED for new development
if (parser.seenval('S')) planner.settings.travel_acceleration = planner.settings.acceleration = parser.value_linear_units();
if (parser.seenval('P')) planner.settings.acceleration = parser.value_linear_units();
if (parser.seenval('R')) planner.settings.retract_acceleration = parser.value_linear_units();
if (parser.seenval('T')) planner.settings.travel_acceleration = parser.value_linear_units();
}
}
/**
* M205: Set Advanced Settings
*
* B = Min Segment Time (µs)
* S = Min Feed Rate (units/s)
* T = Min Travel Feed Rate (units/s)
* X = Max X Jerk (units/sec^2)
* Y = Max Y Jerk (units/sec^2)
* Z = Max Z Jerk (units/sec^2)
* E = Max E Jerk (units/sec^2)
* J = Junction Deviation (mm) (If not using CLASSIC_JERK)
*/
void GcodeSuite::M205() {
if (!parser.seen("BST" TERN_(HAS_JUNCTION_DEVIATION, "J") TERN_(HAS_CLASSIC_JERK, "XYZE"))) return;
//planner.synchronize();
if (parser.seenval('B')) planner.settings.min_segment_time_us = parser.value_ulong();
if (parser.seenval('S')) planner.settings.min_feedrate_mm_s = parser.value_linear_units();
if (parser.seenval('T')) planner.settings.min_travel_feedrate_mm_s = parser.value_linear_units();
#if HAS_JUNCTION_DEVIATION
#if HAS_CLASSIC_JERK && (AXIS4_NAME == 'J' || AXIS5_NAME == 'J' || AXIS6_NAME == 'J')
#error "Can't set_max_jerk for 'J' axis because 'J' is used for Junction Deviation."
#endif
if (parser.seenval('J')) {
const float junc_dev = parser.value_linear_units();
if (WITHIN(junc_dev, 0.01f, 0.3f)) {
planner.junction_deviation_mm = junc_dev;
TERN_(LIN_ADVANCE, planner.recalculate_max_e_jerk());
}
else
SERIAL_ERROR_MSG("?J out of range (0.01 to 0.3)");
}
#endif
#if HAS_CLASSIC_JERK
bool seenZ = false;
LOGICAL_AXIS_CODE(
if (parser.seenval('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units()),
if (parser.seenval('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units()),
if (parser.seenval('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units()),
if ((seenZ = parser.seenval('Z'))) planner.set_max_jerk(Z_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS4_NAME)) planner.set_max_jerk(I_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS5_NAME)) planner.set_max_jerk(J_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS6_NAME)) planner.set_max_jerk(K_AXIS, parser.value_linear_units())
);
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
if (seenZ && planner.max_jerk.z <= 0.1f)
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
#endif
#endif // HAS_CLASSIC_JERK
}

View File

@@ -0,0 +1,171 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfigPre.h"
#if HAS_MULTI_EXTRUDER
#include "../gcode.h"
#include "../../module/tool_change.h"
#if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
#include "../../module/motion.h"
#endif
#include "../../MarlinCore.h" // for SP_X_STR, etc.
void M217_report(const bool eeprom=false) {
#if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
SERIAL_ECHOPGM_P(eeprom ? PSTR(" M217") : PSTR("Toolchange:"));
SERIAL_ECHOPAIR(" S", LINEAR_UNIT(toolchange_settings.swap_length));
SERIAL_ECHOPAIR_P(SP_B_STR, LINEAR_UNIT(toolchange_settings.extra_resume),
SP_E_STR, LINEAR_UNIT(toolchange_settings.extra_prime),
SP_P_STR, LINEAR_UNIT(toolchange_settings.prime_speed));
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(toolchange_settings.retract_speed),
" U", LINEAR_UNIT(toolchange_settings.unretract_speed),
" F", toolchange_settings.fan_speed,
" G", toolchange_settings.fan_time);
#if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
SERIAL_ECHOPAIR(" A", migration.automode);
SERIAL_ECHOPAIR(" L", LINEAR_UNIT(migration.last));
#endif
#if ENABLED(TOOLCHANGE_PARK)
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(toolchange_settings.enable_park));
SERIAL_ECHOPAIR_P(SP_X_STR, LINEAR_UNIT(toolchange_settings.change_point.x));
SERIAL_ECHOPAIR_P(SP_Y_STR, LINEAR_UNIT(toolchange_settings.change_point.y));
#endif
#if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
SERIAL_ECHOPAIR(" V", LINEAR_UNIT(enable_first_prime));
#endif
#else
UNUSED(eeprom);
#endif
SERIAL_ECHOPAIR_P(SP_Z_STR, LINEAR_UNIT(toolchange_settings.z_raise));
SERIAL_EOL();
}
/**
* M217 - Set SINGLENOZZLE toolchange parameters
*
* // Tool change command
* Q Prime active tool and exit
*
* // Tool change settings
* S[linear] Swap length
* B[linear] Extra Swap length
* E[linear] Prime length
* P[linear/m] Prime speed
* R[linear/m] Retract speed
* U[linear/m] UnRetract speed
* V[linear] 0/1 Enable auto prime first extruder used
* W[linear] 0/1 Enable park & Z Raise
* X[linear] Park X (Requires TOOLCHANGE_PARK)
* Y[linear] Park Y (Requires TOOLCHANGE_PARK)
* Z[linear] Z Raise
* F[linear] Fan Speed 0-255
* G[linear/s] Fan time
*
* Tool migration settings
* A[0|1] Enable auto-migration on runout
* L[index] Last extruder to use for auto-migration
*
* Tool migration command
* T[index] Migrate to next extruder or the given extruder
*/
void GcodeSuite::M217() {
#if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
static constexpr float max_extrude = TERN(PREVENT_LENGTHY_EXTRUDE, EXTRUDE_MAXLENGTH, 500);
if (parser.seen('Q')) { tool_change_prime(); return; }
if (parser.seenval('S')) { const float v = parser.value_linear_units(); toolchange_settings.swap_length = constrain(v, 0, max_extrude); }
if (parser.seenval('B')) { const float v = parser.value_linear_units(); toolchange_settings.extra_resume = constrain(v, -10, 10); }
if (parser.seenval('E')) { const float v = parser.value_linear_units(); toolchange_settings.extra_prime = constrain(v, 0, max_extrude); }
if (parser.seenval('P')) { const int16_t v = parser.value_linear_units(); toolchange_settings.prime_speed = constrain(v, 10, 5400); }
if (parser.seenval('R')) { const int16_t v = parser.value_linear_units(); toolchange_settings.retract_speed = constrain(v, 10, 5400); }
if (parser.seenval('U')) { const int16_t v = parser.value_linear_units(); toolchange_settings.unretract_speed = constrain(v, 10, 5400); }
#if TOOLCHANGE_FS_FAN >= 0 && HAS_FAN
if (parser.seenval('F')) { const int16_t v = parser.value_linear_units(); toolchange_settings.fan_speed = constrain(v, 0, 255); }
if (parser.seenval('G')) { const int16_t v = parser.value_linear_units(); toolchange_settings.fan_time = constrain(v, 1, 30); }
#endif
#endif
#if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
if (parser.seenval('V')) { enable_first_prime = parser.value_linear_units(); }
#endif
#if ENABLED(TOOLCHANGE_PARK)
if (parser.seenval('W')) { toolchange_settings.enable_park = parser.value_linear_units(); }
if (parser.seenval('X')) { const int16_t v = parser.value_linear_units(); toolchange_settings.change_point.x = constrain(v, X_MIN_POS, X_MAX_POS); }
if (parser.seenval('Y')) { const int16_t v = parser.value_linear_units(); toolchange_settings.change_point.y = constrain(v, Y_MIN_POS, Y_MAX_POS); }
#endif
if (parser.seenval('Z')) { toolchange_settings.z_raise = parser.value_linear_units(); }
#if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
migration.target = 0; // 0 = disabled
if (parser.seenval('L')) { // Last
const int16_t lval = parser.value_int();
if (WITHIN(lval, 0, EXTRUDERS - 1)) {
migration.last = lval;
migration.automode = (active_extruder < migration.last);
}
}
if (parser.seen('A')) // Auto on/off
migration.automode = parser.value_bool();
if (parser.seen('T')) { // Migrate now
if (parser.has_value()) {
const int16_t tval = parser.value_int();
if (WITHIN(tval, 0, EXTRUDERS - 1) && tval != active_extruder) {
migration.target = tval + 1;
extruder_migration();
migration.target = 0; // disable
return;
}
else
migration.target = 0; // disable
}
else {
extruder_migration();
return;
}
}
#endif
M217_report();
}
#endif // HAS_MULTI_EXTRUDER

View File

@@ -0,0 +1,71 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_HOTEND_OFFSET
#include "../gcode.h"
#include "../../module/motion.h"
#if ENABLED(DELTA)
#include "../../module/planner.h"
#endif
/**
* M218 - set hotend offset (in linear units)
*
* T<tool>
* X<xoffset>
* Y<yoffset>
* Z<zoffset>
*/
void GcodeSuite::M218() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
if (parser.seenval('X')) hotend_offset[target_extruder].x = parser.value_linear_units();
if (parser.seenval('Y')) hotend_offset[target_extruder].y = parser.value_linear_units();
if (parser.seenval('Z')) hotend_offset[target_extruder].z = parser.value_linear_units();
if (!parser.seen("XYZ")) {
SERIAL_ECHO_START();
SERIAL_ECHOPGM(STR_HOTEND_OFFSET);
HOTEND_LOOP() {
SERIAL_CHAR(' ');
SERIAL_ECHO(hotend_offset[e].x);
SERIAL_CHAR(',');
SERIAL_ECHO(hotend_offset[e].y);
SERIAL_CHAR(',');
SERIAL_ECHO_F(hotend_offset[e].z, 3);
}
SERIAL_EOL();
}
#if ENABLED(DELTA)
if (target_extruder == active_extruder)
do_blocking_move_to_xy(current_position, planner.settings.max_feedrate_mm_s[X_AXIS]);
#endif
}
#endif // HAS_HOTEND_OFFSET

View File

@@ -0,0 +1,51 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../module/motion.h"
/**
* M220: Set speed percentage factor, aka "Feed Rate"
*
* Parameters
* S<percent> : Set the feed rate percentage factor
*
* Report the current speed percentage factor if no parameter is specified
*
* For MMU2 and MMU2S devices...
* B : Flag to back up the current factor
* R : Flag to restore the last-saved factor
*/
void GcodeSuite::M220() {
static int16_t backup_feedrate_percentage = 100;
if (parser.seen('B')) backup_feedrate_percentage = feedrate_percentage;
if (parser.seen('R')) feedrate_percentage = backup_feedrate_percentage;
if (parser.seenval('S')) feedrate_percentage = parser.value_int();
if (!parser.seen_any()) {
SERIAL_ECHOPAIR("FR:", feedrate_percentage);
SERIAL_CHAR('%');
SERIAL_EOL();
}
}

View File

@@ -0,0 +1,47 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../module/planner.h"
#if HAS_EXTRUDERS
/**
* M221: Set extrusion percentage (M221 T0 S95)
*/
void GcodeSuite::M221() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
if (parser.seenval('S'))
planner.set_flow(target_extruder, parser.value_int());
else {
SERIAL_ECHO_START();
SERIAL_CHAR('E', '0' + target_extruder);
SERIAL_ECHOPAIR(" Flow: ", planner.flow_percentage[target_extruder]);
SERIAL_CHAR('%');
SERIAL_EOL();
}
}
#endif // EXTRUDERS

View File

@@ -0,0 +1,68 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(EDITABLE_SERVO_ANGLES)
#include "../gcode.h"
#include "../../module/servo.h"
/**
* M281 - Edit / Report Servo Angles
*
* P<index> - Servo to update
* L<angle> - Deploy Angle
* U<angle> - Stowed Angle
*/
void GcodeSuite::M281() {
if (!parser.seenval('P')) return;
const int servo_index = parser.value_int();
if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
#if ENABLED(BLTOUCH)
if (servo_index == Z_PROBE_SERVO_NR) {
SERIAL_ERROR_MSG("BLTouch angles can't be changed.");
return;
}
#endif
bool angle_change = false;
if (parser.seen('L')) {
servo_angles[servo_index][0] = parser.value_int();
angle_change = true;
}
if (parser.seen('U')) {
servo_angles[servo_index][1] = parser.value_int();
angle_change = true;
}
if (!angle_change) {
SERIAL_ECHO_MSG(" Servo ", servo_index,
" L", servo_angles[servo_index][0],
" U", servo_angles[servo_index][1]);
}
}
else
SERIAL_ERROR_MSG("Servo ", servo_index, " out of range");
}
#endif // EDITABLE_SERVO_ANGLES

View File

@@ -0,0 +1,91 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PIDTEMP)
#include "../gcode.h"
#include "../../module/temperature.h"
/**
* M301: Set PID parameters P I D (and optionally C, L)
*
* E[extruder] Default: 0
*
* P[float] Kp term
* I[float] Ki term (unscaled)
* D[float] Kd term (unscaled)
*
* With PID_EXTRUSION_SCALING:
*
* C[float] Kc term
* L[int] LPQ length
*
* With PID_FAN_SCALING:
*
* F[float] Kf term
*/
void GcodeSuite::M301() {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behavior (omitting E parameter) is to update for extruder 0 only
const uint8_t e = parser.byteval('E'); // extruder being updated
if (e < HOTENDS) { // catch bad input value
if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
#if ENABLED(PID_EXTRUSION_SCALING)
if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
if (parser.seenval('L')) thermalManager.lpq_len = parser.value_int();
NOMORE(thermalManager.lpq_len, LPQ_MAX_LEN);
NOLESS(thermalManager.lpq_len, 0);
#endif
#if ENABLED(PID_FAN_SCALING)
if (parser.seen('F')) PID_PARAM(Kf, e) = parser.value_float();
#endif
thermalManager.updatePID();
SERIAL_ECHO_START();
#if ENABLED(PID_PARAMS_PER_HOTEND)
SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
#endif
SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e),
" i:", unscalePID_i(PID_PARAM(Ki, e)),
" d:", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
#endif
#if ENABLED(PID_FAN_SCALING)
SERIAL_ECHOPAIR(" f:", PID_PARAM(Kf, e));
#endif
SERIAL_EOL();
}
else
SERIAL_ERROR_MSG(STR_INVALID_EXTRUDER);
}
#endif // PIDTEMP

View File

@@ -0,0 +1,63 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PREVENT_COLD_EXTRUSION)
#include "../gcode.h"
#include "../../module/temperature.h"
/**
* M302: Allow cold extrudes, or set the minimum extrude temperature
*
* S<temperature> sets the minimum extrude temperature
* P<bool> enables (1) or disables (0) cold extrusion
*
* Examples:
*
* M302 ; report current cold extrusion state
* M302 P0 ; enable cold extrusion checking
* M302 P1 ; disable cold extrusion checking
* M302 S0 ; always allow extrusion (disables checking)
* M302 S170 ; only allow extrusion above 170
* M302 S170 P1 ; set min extrude temp to 170 but leave disabled
*/
void GcodeSuite::M302() {
const bool seen_S = parser.seen('S');
if (seen_S) {
thermalManager.extrude_min_temp = parser.value_celsius();
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
}
if (parser.seen('P'))
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
else if (!seen_S) {
// Report current state
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Cold extrudes are ");
SERIAL_ECHOPGM_P(thermalManager.allow_cold_extrude ? PSTR("en") : PSTR("dis"));
SERIAL_ECHOLNPAIR("abled (min temp ", thermalManager.extrude_min_temp, "C)");
}
}
#endif // PREVENT_COLD_EXTRUSION

View File

@@ -0,0 +1,49 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PIDTEMPBED)
#include "../gcode.h"
#include "../../module/temperature.h"
/**
* M304 - Set and/or Report the current Bed PID values
*
* P<pval> - Set the P value
* I<ival> - Set the I value
* D<dval> - Set the D value
*/
void GcodeSuite::M304() {
if (parser.seen('P')) thermalManager.temp_bed.pid.Kp = parser.value_float();
if (parser.seen('I')) thermalManager.temp_bed.pid.Ki = scalePID_i(parser.value_float());
if (parser.seen('D')) thermalManager.temp_bed.pid.Kd = scalePID_d(parser.value_float());
SERIAL_ECHO_MSG(" p:", thermalManager.temp_bed.pid.Kp,
" i:", unscalePID_i(thermalManager.temp_bed.pid.Ki),
" d:", unscalePID_d(thermalManager.temp_bed.pid.Kd));
}
#endif // PIDTEMPBED

View File

@@ -0,0 +1,79 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_USER_THERMISTORS
#include "../gcode.h"
#include "../../module/temperature.h"
/**
* M305: Set (or report) custom thermistor parameters
*
* P[index] Thermistor table index
* R[ohms] Pullup resistor value
* T[ohms] Resistance at 25C
* B[beta] Thermistor "beta" value
* C[coeff] Steinhart-Hart Coefficient 'C'
*
* Format: M305 P[tbl_index] R[pullup_resistor_val] T[therm_25C_resistance] B[therm_beta] C[Steinhart_Hart_C_coeff]
*
* Examples: M305 P0 R4700 T100000 B3950 C0.0
* M305 P0 R4700
* M305 P0 T100000
* M305 P0 B3950
* M305 P0 C0.0
*/
void GcodeSuite::M305() {
const int8_t t_index = parser.intval('P', -1);
const bool do_set = parser.seen("BCRT");
// A valid P index is required
if (t_index >= (USER_THERMISTORS) || (do_set && t_index < 0))
SERIAL_ECHO_MSG("!Invalid index. (0 <= P <= ", USER_THERMISTORS - 1, ")");
else if (do_set) {
if (parser.seen('R')) // Pullup resistor value
if (!thermalManager.set_pull_up_res(t_index, parser.value_float()))
SERIAL_ECHO_MSG("!Invalid series resistance. (0 < R < 1000000)");
if (parser.seen('T')) // Resistance at 25C
if (!thermalManager.set_res25(t_index, parser.value_float()))
SERIAL_ECHO_MSG("!Invalid 25C resistance. (0 < T < 10000000)");
if (parser.seen('B')) // Beta value
if (!thermalManager.set_beta(t_index, parser.value_float()))
SERIAL_ECHO_MSG("!Invalid beta. (0 < B < 1000000)");
if (parser.seen('C')) // Steinhart-Hart C coefficient
if (!thermalManager.set_sh_coeff(t_index, parser.value_float()))
SERIAL_ECHO_MSG("!Invalid Steinhart-Hart C coeff. (-0.01 < C < +0.01)");
} // If not setting then report parameters
else if (t_index < 0) { // ...all user thermistors
LOOP_L_N(i, USER_THERMISTORS)
thermalManager.log_user_thermistor(i);
}
else // ...one user thermistor
thermalManager.log_user_thermistor(t_index);
}
#endif // HAS_USER_THERMISTORS

View File

@@ -0,0 +1,48 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PIDTEMPCHAMBER)
#include "../gcode.h"
#include "../../module/temperature.h"
/**
* M309 - Set and/or Report the current Chamber PID values
*
* P<pval> - Set the P value
* I<ival> - Set the I value
* D<dval> - Set the D value
*/
void GcodeSuite::M309() {
if (parser.seen('P')) thermalManager.temp_chamber.pid.Kp = parser.value_float();
if (parser.seen('I')) thermalManager.temp_chamber.pid.Ki = scalePID_i(parser.value_float());
if (parser.seen('D')) thermalManager.temp_chamber.pid.Kd = scalePID_d(parser.value_float());
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR(" p:", thermalManager.temp_chamber.pid.Kp,
" i:", unscalePID_i(thermalManager.temp_chamber.pid.Ki),
" d:", unscalePID_d(thermalManager.temp_chamber.pid.Kd));
}
#endif // PIDTEMPCHAMBER

View File

@@ -0,0 +1,386 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PINS_DEBUGGING)
#include "../gcode.h"
#include "../../MarlinCore.h" // for pin_is_protected
#include "../../pins/pinsDebug.h"
#include "../../module/endstops.h"
#if HAS_Z_SERVO_PROBE
#include "../../module/probe.h"
#include "../../module/servo.h"
#endif
#if ENABLED(BLTOUCH)
#include "../../feature/bltouch.h"
#endif
#if ENABLED(HOST_PROMPT_SUPPORT)
#include "../../feature/host_actions.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../../lcd/extui/ui_api.h"
#endif
#if HAS_RESUME_CONTINUE
#include "../../lcd/marlinui.h"
#endif
#ifndef GET_PIN_MAP_PIN_M43
#define GET_PIN_MAP_PIN_M43(Q) GET_PIN_MAP_PIN(Q)
#endif
inline void toggle_pins() {
const bool ignore_protection = parser.boolval('I');
const int repeat = parser.intval('R', 1),
start = PARSED_PIN_INDEX('S', 0),
end = PARSED_PIN_INDEX('L', NUM_DIGITAL_PINS - 1),
wait = parser.intval('W', 500);
LOOP_S_LE_N(i, start, end) {
pin_t pin = GET_PIN_MAP_PIN_M43(i);
if (!VALID_PIN(pin)) continue;
if (M43_NEVER_TOUCH(i) || (!ignore_protection && pin_is_protected(pin))) {
report_pin_state_extended(pin, ignore_protection, true, PSTR("Untouched "));
SERIAL_EOL();
}
else {
watchdog_refresh();
report_pin_state_extended(pin, ignore_protection, true, PSTR("Pulsing "));
#ifdef __STM32F1__
const auto prior_mode = _GET_MODE(i);
#else
const bool prior_mode = GET_PINMODE(pin);
#endif
#if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
if (pin == TEENSY_E2) {
SET_OUTPUT(TEENSY_E2);
for (int16_t j = 0; j < repeat; j++) {
WRITE(TEENSY_E2, LOW); safe_delay(wait);
WRITE(TEENSY_E2, HIGH); safe_delay(wait);
WRITE(TEENSY_E2, LOW); safe_delay(wait);
}
}
else if (pin == TEENSY_E3) {
SET_OUTPUT(TEENSY_E3);
for (int16_t j = 0; j < repeat; j++) {
WRITE(TEENSY_E3, LOW); safe_delay(wait);
WRITE(TEENSY_E3, HIGH); safe_delay(wait);
WRITE(TEENSY_E3, LOW); safe_delay(wait);
}
}
else
#endif
{
pinMode(pin, OUTPUT);
for (int16_t j = 0; j < repeat; j++) {
watchdog_refresh(); extDigitalWrite(pin, 0); safe_delay(wait);
watchdog_refresh(); extDigitalWrite(pin, 1); safe_delay(wait);
watchdog_refresh(); extDigitalWrite(pin, 0); safe_delay(wait);
watchdog_refresh();
}
}
#ifdef __STM32F1__
_SET_MODE(i, prior_mode);
#else
pinMode(pin, prior_mode);
#endif
}
SERIAL_EOL();
}
SERIAL_ECHOLNPGM("Done.");
} // toggle_pins
inline void servo_probe_test() {
#if !(NUM_SERVOS > 0 && HAS_SERVO_0)
SERIAL_ERROR_MSG("SERVO not set up.");
#elif !HAS_Z_SERVO_PROBE
SERIAL_ERROR_MSG("Z_PROBE_SERVO_NR not set up.");
#else // HAS_Z_SERVO_PROBE
const uint8_t probe_index = parser.byteval('P', Z_PROBE_SERVO_NR);
SERIAL_ECHOLNPAIR("Servo probe test\n"
". using index: ", probe_index,
", deploy angle: ", servo_angles[probe_index][0],
", stow angle: ", servo_angles[probe_index][1]
);
bool deploy_state = false, stow_state;
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
#define PROBE_TEST_PIN Z_MIN_PIN
constexpr bool probe_inverting = Z_MIN_ENDSTOP_INVERTING;
SERIAL_ECHOLNPAIR(". Probe Z_MIN_PIN: ", PROBE_TEST_PIN);
SERIAL_ECHOPGM(". Z_MIN_ENDSTOP_INVERTING: ");
#else
#define PROBE_TEST_PIN Z_MIN_PROBE_PIN
constexpr bool probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
SERIAL_ECHOLNPAIR(". Probe Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
SERIAL_ECHOPGM( ". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
#endif
serialprint_truefalse(probe_inverting);
SERIAL_EOL();
SET_INPUT_PULLUP(PROBE_TEST_PIN);
// First, check for a probe that recognizes an advanced BLTouch sequence.
// In addition to STOW and DEPLOY, it uses SW MODE (and RESET in the beginning)
// to see if this is one of the following: BLTOUCH Classic 1.2, 1.3, or
// BLTouch Smart 1.0, 2.0, 2.2, 3.0, 3.1. But only if the user has actually
// configured a BLTouch as being present. If the user has not configured this,
// the BLTouch will be detected in the last phase of these tests (see further on).
bool blt = false;
// This code will try to detect a BLTouch probe or clone
#if ENABLED(BLTOUCH)
SERIAL_ECHOLNPGM(". Check for BLTOUCH");
bltouch._reset();
bltouch._stow();
if (probe_inverting == READ(PROBE_TEST_PIN)) {
bltouch._set_SW_mode();
if (probe_inverting != READ(PROBE_TEST_PIN)) {
bltouch._deploy();
if (probe_inverting == READ(PROBE_TEST_PIN)) {
bltouch._stow();
SERIAL_ECHOLNPGM("= BLTouch Classic 1.2, 1.3, Smart 1.0, 2.0, 2.2, 3.0, 3.1 detected.");
// Check for a 3.1 by letting the user trigger it, later
blt = true;
}
}
}
#endif
// The following code is common to all kinds of servo probes.
// Since it could be a real servo or a BLTouch (any kind) or a clone,
// use only "common" functions - i.e. SERVO_MOVE. No bltouch.xxxx stuff.
// If it is already recognised as a being a BLTouch, no need for this test
if (!blt) {
// DEPLOY and STOW 4 times and see if the signal follows
// Then it is a mechanical switch
uint8_t i = 0;
SERIAL_ECHOLNPGM(". Deploy & stow 4 times");
do {
MOVE_SERVO(probe_index, servo_angles[Z_PROBE_SERVO_NR][0]); // Deploy
safe_delay(500);
deploy_state = READ(PROBE_TEST_PIN);
MOVE_SERVO(probe_index, servo_angles[Z_PROBE_SERVO_NR][1]); // Stow
safe_delay(500);
stow_state = READ(PROBE_TEST_PIN);
} while (++i < 4);
if (probe_inverting != deploy_state) SERIAL_ECHOLNPGM("WARNING: INVERTING setting probably backwards.");
if (deploy_state != stow_state) {
SERIAL_ECHOLNPGM("= Mechanical Switch detected");
if (deploy_state) {
SERIAL_ECHOLNPAIR(" DEPLOYED state: HIGH (logic 1)",
" STOWED (triggered) state: LOW (logic 0)");
}
else {
SERIAL_ECHOLNPAIR(" DEPLOYED state: LOW (logic 0)",
" STOWED (triggered) state: HIGH (logic 1)");
}
#if ENABLED(BLTOUCH)
SERIAL_ECHOLNPGM("FAIL: BLTOUCH enabled - Set up this device as a Servo Probe with INVERTING set to 'true'.");
#endif
return;
}
}
// Ask the user for a trigger event and measure the pulse width.
MOVE_SERVO(probe_index, servo_angles[Z_PROBE_SERVO_NR][0]); // Deploy
safe_delay(500);
SERIAL_ECHOLNPGM("** Please trigger probe within 30 sec **");
uint16_t probe_counter = 0;
// Wait 30 seconds for user to trigger probe
for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
safe_delay(2);
if (0 == j % (500 * 1)) gcode.reset_stepper_timeout(); // Keep steppers powered
if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
for (probe_counter = 0; probe_counter < 15 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter) safe_delay(2);
SERIAL_ECHOPGM(". Pulse width");
if (probe_counter == 15)
SERIAL_ECHOLNPGM(": 30ms or more");
else
SERIAL_ECHOLNPAIR(" (+/- 4ms): ", probe_counter * 2);
if (probe_counter >= 4) {
if (probe_counter == 15) {
if (blt) SERIAL_ECHOPGM("= BLTouch V3.1");
else SERIAL_ECHOPGM("= Z Servo Probe");
}
else SERIAL_ECHOPGM("= BLTouch pre V3.1 (or compatible)");
SERIAL_ECHOLNPGM(" detected.");
}
else SERIAL_ECHOLNPGM("FAIL: Noise detected - please re-run test");
MOVE_SERVO(probe_index, servo_angles[Z_PROBE_SERVO_NR][1]); // Stow
return;
}
}
if (!probe_counter) SERIAL_ECHOLNPGM("FAIL: No trigger detected");
#endif // HAS_Z_SERVO_PROBE
} // servo_probe_test
/**
* M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
*
* M43 - report name and state of pin(s)
* P<pin> Pin to read or watch. If omitted, reads all pins.
* I Flag to ignore Marlin's pin protection.
*
* M43 W - Watch pins -reporting changes- until reset, click, or M108.
* P<pin> Pin to read or watch. If omitted, read/watch all pins.
* I Flag to ignore Marlin's pin protection.
*
* M43 E<bool> - Enable / disable background endstop monitoring
* - Machine continues to operate
* - Reports changes to endstops
* - Toggles LED_PIN when an endstop changes
* - Cannot reliably catch the 5mS pulse from BLTouch type probes
*
* M43 T - Toggle pin(s) and report which pin is being toggled
* S<pin> - Start Pin number. If not given, will default to 0
* L<pin> - End Pin number. If not given, will default to last pin defined for this board
* I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
* R - Repeat pulses on each pin this number of times before continuing to next pin
* W - Wait time (in milliseconds) between pulses. If not given will default to 500
*
* M43 S - Servo probe test
* P<index> - Probe index (optional - defaults to 0
*/
void GcodeSuite::M43() {
// 'T' must be first. It uses 'S' and 'E' differently.
if (parser.seen('T')) return toggle_pins();
// 'E' Enable or disable endstop monitoring and return
if (parser.seen('E')) {
endstops.monitor_flag = parser.value_bool();
SERIAL_ECHOPGM("endstop monitor ");
SERIAL_ECHOPGM_P(endstops.monitor_flag ? PSTR("en") : PSTR("dis"));
SERIAL_ECHOLNPGM("abled");
return;
}
// 'S' Run servo probe test and return
if (parser.seen('S')) return servo_probe_test();
// 'P' Get the range of pins to test or watch
uint8_t first_pin = PARSED_PIN_INDEX('P', 0),
last_pin = parser.seenval('P') ? first_pin : NUMBER_PINS_TOTAL - 1;
if (first_pin > last_pin) return;
// 'I' to ignore protected pins
const bool ignore_protection = parser.boolval('I');
// 'W' Watch until click, M108, or reset
if (parser.boolval('W')) {
SERIAL_ECHOLNPGM("Watching pins");
#ifdef ARDUINO_ARCH_SAM
NOLESS(first_pin, 2); // Don't hijack the UART pins
#endif
uint8_t pin_state[last_pin - first_pin + 1];
LOOP_S_LE_N(i, first_pin, last_pin) {
pin_t pin = GET_PIN_MAP_PIN_M43(i);
if (!VALID_PIN(pin)) continue;
if (M43_NEVER_TOUCH(i) || (!ignore_protection && pin_is_protected(pin))) continue;
pinMode(pin, INPUT_PULLUP);
delay(1);
/*
if (IS_ANALOG(pin))
pin_state[pin - first_pin] = analogRead(DIGITAL_PIN_TO_ANALOG_PIN(pin)); // int16_t pin_state[...]
else
//*/
pin_state[i - first_pin] = extDigitalRead(pin);
}
#if HAS_RESUME_CONTINUE
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true;
TERN_(HOST_PROMPT_SUPPORT, host_prompt_do(PROMPT_USER_CONTINUE, PSTR("M43 Wait Called"), CONTINUE_STR));
TERN_(EXTENSIBLE_UI, ExtUI::onUserConfirmRequired_P(PSTR("M43 Wait Called")));
#endif
for (;;) {
LOOP_S_LE_N(i, first_pin, last_pin) {
pin_t pin = GET_PIN_MAP_PIN_M43(i);
if (!VALID_PIN(pin)) continue;
if (M43_NEVER_TOUCH(i) || (!ignore_protection && pin_is_protected(pin))) continue;
const byte val =
/*
IS_ANALOG(pin)
? analogRead(DIGITAL_PIN_TO_ANALOG_PIN(pin)) : // int16_t val
:
//*/
extDigitalRead(pin);
if (val != pin_state[i - first_pin]) {
report_pin_state_extended(pin, ignore_protection, false);
pin_state[i - first_pin] = val;
}
}
#if HAS_RESUME_CONTINUE
ui.update();
if (!wait_for_user) break;
#endif
safe_delay(200);
}
}
else {
// Report current state of selected pin(s)
LOOP_S_LE_N(i, first_pin, last_pin) {
pin_t pin = GET_PIN_MAP_PIN_M43(i);
if (VALID_PIN(pin)) report_pin_state_extended(pin, ignore_protection, true);
}
}
}
#endif // PINS_DEBUGGING

View File

@@ -0,0 +1,40 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
#include "../gcode.h"
#include "../../module/stepper.h"
/**
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
*/
void GcodeSuite::M540() {
if (parser.seen('S'))
planner.abort_on_endstop_hit = parser.value_bool();
}
#endif // SD_ABORT_ON_ENDSTOP_HIT

View File

@@ -0,0 +1,81 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(BAUD_RATE_GCODE)
#include "../gcode.h"
/**
* M575 - Change serial baud rate
*
* P<index> - Serial port index. Omit for all.
* B<baudrate> - Baud rate (bits per second)
*/
void GcodeSuite::M575() {
int32_t baud = parser.ulongval('B');
switch (baud) {
case 24:
case 96:
case 192:
case 384:
case 576:
case 1152: baud *= 100; break;
case 250:
case 500: baud *= 1000; break;
case 19: baud = 19200; break;
case 38: baud = 38400; break;
case 57: baud = 57600; break;
case 115: baud = 115200; break;
}
switch (baud) {
case 2400: case 9600: case 19200: case 38400: case 57600:
case 115200: case 250000: case 500000: case 1000000: {
const int8_t port = parser.intval('P', -99);
const bool set1 = (port == -99 || port == 0);
if (set1) SERIAL_ECHO_MSG(" Serial ", AS_CHAR('0'), " baud rate set to ", baud);
#if HAS_MULTI_SERIAL
const bool set2 = (port == -99 || port == 1);
if (set2) SERIAL_ECHO_MSG(" Serial ", AS_CHAR('1'), " baud rate set to ", baud);
#ifdef SERIAL_PORT_3
const bool set3 = (port == -99 || port == 2);
if (set3) SERIAL_ECHO_MSG(" Serial ", AS_CHAR('2'), " baud rate set to ", baud);
#endif
#endif
SERIAL_FLUSH();
if (set1) { MYSERIAL1.end(); MYSERIAL1.begin(baud); }
#if HAS_MULTI_SERIAL
if (set2) { MYSERIAL2.end(); MYSERIAL2.begin(baud); }
#ifdef SERIAL_PORT_3
if (set3) { MYSERIAL3.end(); MYSERIAL3.begin(baud); }
#endif
#endif
} break;
default: SERIAL_ECHO_MSG("?(B)aud rate implausible.");
}
}
#endif // BAUD_RATE_GCODE

View File

@@ -0,0 +1,98 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(DUET_SMART_EFFECTOR) && PIN_EXISTS(SMART_EFFECTOR_MOD)
#include "../gcode.h"
#include "../../HAL/shared/Delay.h"
#include "../parser.h"
/**
* The Marlin format for the M672 command is different than shown in the Duet Smart Effector
* documentation https://duet3d.dozuki.com/Wiki/Smart_effector_and_carriage_adapters_for_delta_printer
*
* To set custom sensitivity:
* Duet: M672 S105:aaa:bbb
* Marlin: M672 Saaa
*
* (where aaa is the desired sensitivity and bbb is 255 - aaa).
*
* Revert sensitivity to factory settings:
* Duet: M672 S105:131:131
* Marlin: M672 R
*/
#define M672_PROGBYTE 105 // magic byte to start programming custom sensitivity
#define M672_ERASEBYTE 131 // magic byte to clear custom sensitivity
//
// Smart Effector byte send protocol:
//
// 0 0 1 0 ... always 0010
// b7 b6 b5 b4 ~b4 ... hi bits, NOT last bit
// b3 b2 b1 b0 ~b0 ... lo bits, NOT last bit
//
void M672_send(uint8_t b) { // bit rate requirement: 1KHz +/- 30%
LOOP_L_N(bits, 14) {
switch (bits) {
default: { OUT_WRITE(SMART_EFFECTOR_MOD_PIN, !!(b & 0x80)); b <<= 1; break; } // send bit, shift next into place
case 7:
case 12: { OUT_WRITE(SMART_EFFECTOR_MOD_PIN, !!(b & 0x80)); break; } // send bit. no shift
case 8:
case 13: { OUT_WRITE(SMART_EFFECTOR_MOD_PIN, !(b & 0x80)); b <<= 1; break; } // send inverted previous bit
case 0: case 1: // 00
case 3: { OUT_WRITE(SMART_EFFECTOR_MOD_PIN, LOW); break; } // 0010
case 2: { OUT_WRITE(SMART_EFFECTOR_MOD_PIN, HIGH); break; } // 001
}
DELAY_US(1000);
}
}
/**
* M672 - Set/reset Duet Smart Effector sensitivity
*
* One of these is required:
* S<sensitivity> - 0-255
* R - Flag to reset sensitivity to default
*/
void GcodeSuite::M672() {
if (parser.seen('R')) {
M672_send(M672_ERASEBYTE);
M672_send(M672_ERASEBYTE);
}
else if (parser.seenval('S')) {
const int8_t M672_sensitivity = parser.value_byte();
M672_send(M672_PROGBYTE);
M672_send(M672_sensitivity);
M672_send(255 - M672_sensitivity);
}
else {
SERIAL_ECHO_MSG("!'S' or 'R' parameter required.");
return;
}
OUT_WRITE(SMART_EFFECTOR_MOD_PIN, LOW); // Keep Smart Effector in NORMAL mode
}
#endif // DUET_SMART_EFFECTOR && SMART_EFFECTOR_MOD_PIN

View File

@@ -0,0 +1,119 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../module/planner.h"
void report_M92(const bool echo=true, const int8_t e=-1) {
if (echo) SERIAL_ECHO_START(); else SERIAL_CHAR(' ');
SERIAL_ECHOPAIR_P(LIST_N(DOUBLE(LINEAR_AXES),
PSTR(" M92 X"), LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]),
SP_Y_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]),
SP_Z_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]),
SP_I_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[I_AXIS]),
SP_J_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[J_AXIS]),
SP_K_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[K_AXIS]))
);
#if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(SP_E_STR, VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
#endif
SERIAL_EOL();
#if ENABLED(DISTINCT_E_FACTORS)
LOOP_L_N(i, E_STEPPERS) {
if (e >= 0 && i != e) continue;
if (echo) SERIAL_ECHO_START(); else SERIAL_CHAR(' ');
SERIAL_ECHOLNPAIR_P(PSTR(" M92 T"), i,
SP_E_STR, VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS_N(i)]));
}
#endif
UNUSED(e);
}
/**
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
* (Follows the same syntax as G92)
*
* With multiple extruders use T to specify which one.
*
* If no argument is given print the current values.
*
* With MAGIC_NUMBERS_GCODE:
* Use 'H' and/or 'L' to get ideal layer-height information.
* 'H' specifies micro-steps to use. We guess if it's not supplied.
* 'L' specifies a desired layer height. Nearest good heights are shown.
*/
void GcodeSuite::M92() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
// No arguments? Show M92 report.
if (!parser.seen(
LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR)
TERN_(MAGIC_NUMBERS_GCODE, "HL")
)) return report_M92(true, target_extruder);
LOOP_LOGICAL_AXES(i) {
if (parser.seenval(axis_codes[i])) {
if (TERN1(HAS_EXTRUDERS, i != E_AXIS))
planner.settings.axis_steps_per_mm[i] = parser.value_per_axis_units((AxisEnum)i);
else {
#if HAS_EXTRUDERS
const float value = parser.value_per_axis_units((AxisEnum)(E_AXIS_N(target_extruder)));
if (value < 20) {
float factor = planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] / value; // increase e constants if M92 E14 is given for netfab.
#if HAS_CLASSIC_JERK && HAS_CLASSIC_E_JERK
planner.max_jerk.e *= factor;
#endif
planner.settings.max_feedrate_mm_s[E_AXIS_N(target_extruder)] *= factor;
planner.max_acceleration_steps_per_s2[E_AXIS_N(target_extruder)] *= factor;
}
planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] = value;
#endif
}
}
}
planner.refresh_positioning();
#if ENABLED(MAGIC_NUMBERS_GCODE)
#ifndef Z_MICROSTEPS
#define Z_MICROSTEPS 16
#endif
const float wanted = parser.floatval('L');
if (parser.seen('H') || wanted) {
const uint16_t argH = parser.ushortval('H'),
micro_steps = argH ?: Z_MICROSTEPS;
const float z_full_step_mm = micro_steps * planner.steps_to_mm[Z_AXIS];
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("{ micro_steps:", micro_steps, ", z_full_step_mm:", z_full_step_mm);
if (wanted) {
const float best = uint16_t(wanted / z_full_step_mm) * z_full_step_mm;
SERIAL_ECHOPAIR(", best:[", best);
if (best != wanted) { SERIAL_CHAR(','); SERIAL_DECIMAL(best + z_full_step_mm); }
SERIAL_CHAR(']');
}
SERIAL_ECHOLNPGM(" }");
}
#endif
}

View File

@@ -0,0 +1,44 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(AIR_EVACUATION)
#include "../gcode.h"
#include "../../feature/spindle_laser.h"
/**
* M10: Vacuum or Blower On
*/
void GcodeSuite::M10() {
cutter.air_evac_enable(); // Turn on Vacuum or Blower motor
}
/**
* M11: Vacuum or Blower OFF
*/
void GcodeSuite::M11() {
cutter.air_evac_disable(); // Turn off Vacuum or Blower motor
}
#endif // AIR_EVACUATION

View File

@@ -0,0 +1,56 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if DISABLED(EMERGENCY_PARSER)
#include "../gcode.h"
#include "../../MarlinCore.h" // for wait_for_heatup, kill, M112_KILL_STR
#include "../../module/motion.h" // for quickstop_stepper
/**
* M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
*/
void GcodeSuite::M108() {
TERN_(HAS_RESUME_CONTINUE, wait_for_user = false);
wait_for_heatup = false;
}
/**
* M112: Full Shutdown
*/
void GcodeSuite::M112() {
kill(M112_KILL_STR, nullptr, true);
}
/**
* M410: Quickstop - Abort all planned moves
*
* This will stop the carriages mid-move, so most likely they
* will be out of sync with the stepper position after this.
*/
void GcodeSuite::M410() {
quickstop_stepper();
}
#endif // !EMERGENCY_PARSER

View File

@@ -0,0 +1,77 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
/**
* M111: Set the debug level
*/
void GcodeSuite::M111() {
if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
static PGMSTR(str_debug_1, STR_DEBUG_ECHO);
static PGMSTR(str_debug_2, STR_DEBUG_INFO);
static PGMSTR(str_debug_4, STR_DEBUG_ERRORS);
static PGMSTR(str_debug_8, STR_DEBUG_DRYRUN);
static PGMSTR(str_debug_16, STR_DEBUG_COMMUNICATION);
#if ENABLED(DEBUG_LEVELING_FEATURE)
static PGMSTR(str_debug_lvl, STR_DEBUG_LEVELING);
#endif
static PGM_P const debug_strings[] PROGMEM = {
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
TERN_(DEBUG_LEVELING_FEATURE, str_debug_lvl)
};
SERIAL_ECHO_START();
SERIAL_ECHOPGM(STR_DEBUG_PREFIX);
if (marlin_debug_flags) {
uint8_t comma = 0;
LOOP_L_N(i, COUNT(debug_strings)) {
if (TEST(marlin_debug_flags, i)) {
if (comma++) SERIAL_CHAR(',');
SERIAL_ECHOPGM_P((char*)pgm_read_ptr(&debug_strings[i]));
}
}
}
else {
SERIAL_ECHOPGM(STR_DEBUG_OFF);
#if !defined(__AVR__) || !defined(USBCON)
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
SERIAL_ECHOPAIR("\nBuffer Overruns: ", MYSERIAL1.buffer_overruns());
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
SERIAL_ECHOPAIR("\nFraming Errors: ", MYSERIAL1.framing_errors());
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
SERIAL_ECHOPAIR("\nDropped bytes: ", MYSERIAL1.dropped());
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
SERIAL_ECHOPAIR("\nMax RX Queue Size: ", MYSERIAL1.rxMaxEnqueued());
#endif
#endif // !__AVR__ || !USBCON
}
SERIAL_EOL();
}

View File

@@ -0,0 +1,34 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../module/endstops.h"
/**
* M120: Enable endstops and set non-homing endstop state to "enabled"
*/
void GcodeSuite::M120() { endstops.enable_globally(true); }
/**
* M121: Disable endstops and set non-homing endstop state to "disabled"
*/
void GcodeSuite::M121() { endstops.enable_globally(false); }

View File

@@ -0,0 +1,79 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../MarlinCore.h" // for stepper_inactive_time, disable_e_steppers
#include "../../lcd/marlinui.h"
#include "../../module/stepper.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../../feature/bedlevel/bedlevel.h"
#endif
/**
* M17: Enable stepper motors
*/
void GcodeSuite::M17() {
if (parser.seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
LOGICAL_AXIS_CODE(
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) enable_e_steppers(),
if (parser.seen_test('X')) ENABLE_AXIS_X(),
if (parser.seen_test('Y')) ENABLE_AXIS_Y(),
if (parser.seen_test('Z')) ENABLE_AXIS_Z(),
if (parser.seen_test(AXIS4_NAME)) ENABLE_AXIS_I(),
if (parser.seen_test(AXIS5_NAME)) ENABLE_AXIS_J(),
if (parser.seen_test(AXIS6_NAME)) ENABLE_AXIS_K()
);
}
else {
LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_all_steppers();
}
}
/**
* M18, M84: Disable stepper motors
*/
void GcodeSuite::M18_M84() {
if (parser.seenval('S')) {
reset_stepper_timeout();
stepper_inactive_time = parser.value_millis_from_seconds();
}
else {
if (parser.seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
planner.synchronize();
LOGICAL_AXIS_CODE(
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) disable_e_steppers(),
if (parser.seen_test('X')) DISABLE_AXIS_X(),
if (parser.seen_test('Y')) DISABLE_AXIS_Y(),
if (parser.seen_test('Z')) DISABLE_AXIS_Z(),
if (parser.seen_test(AXIS4_NAME)) DISABLE_AXIS_I(),
if (parser.seen_test(AXIS5_NAME)) DISABLE_AXIS_J(),
if (parser.seen_test(AXIS6_NAME)) DISABLE_AXIS_K()
);
}
else
planner.finish_and_disable();
TERN_(AUTO_BED_LEVELING_UBL, ubl.steppers_were_disabled());
}
}

View File

@@ -0,0 +1,46 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfigPre.h"
#if HAS_SOFTWARE_ENDSTOPS
#include "../gcode.h"
#include "../../module/motion.h"
/**
* M211: Enable, Disable, and/or Report software endstops
*
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
*/
void GcodeSuite::M211() {
const xyz_pos_t l_soft_min = soft_endstop.min.asLogical(),
l_soft_max = soft_endstop.max.asLogical();
SERIAL_ECHO_START();
SERIAL_ECHOPGM(STR_SOFT_ENDSTOPS);
if (parser.seen('S')) soft_endstop._enabled = parser.value_bool();
serialprint_onoff(soft_endstop._enabled);
print_pos(l_soft_min, PSTR(STR_SOFT_MIN), PSTR(" "));
print_pos(l_soft_max, PSTR(STR_SOFT_MAX));
}
#endif

View File

@@ -0,0 +1,60 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(DIRECT_PIN_CONTROL)
#include "../gcode.h"
#include "../../MarlinCore.h" // for pin_is_protected and idle()
#include "../../module/stepper.h"
void protected_pin_err();
/**
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
*/
void GcodeSuite::M226() {
if (parser.seen('P')) {
const int pin_number = PARSED_PIN_INDEX('P', 0),
pin_state = parser.intval('S', -1); // required pin state - default is inverted
const pin_t pin = GET_PIN_MAP_PIN(pin_number);
if (WITHIN(pin_state, -1, 1) && pin > -1) {
if (pin_is_protected(pin))
protected_pin_err();
else {
int target = LOW;
planner.synchronize();
pinMode(pin, INPUT);
switch (pin_state) {
case 1: target = HIGH; break;
case 0: target = LOW; break;
case -1: target = !extDigitalRead(pin); break;
}
while (int(extDigitalRead(pin)) != target) idle();
}
} // pin_state -1 0 1 && pin > -1
} // parser.seen('P')
}
#endif // DIRECT_PIN_CONTROL

View File

@@ -0,0 +1,54 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS
#include "../gcode.h"
#include "../../module/servo.h"
/**
* M280: Get or set servo position. P<index> [S<angle>]
*/
void GcodeSuite::M280() {
if (!parser.seen('P')) return;
const int servo_index = parser.value_int();
if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
if (parser.seen('S')) {
const int a = parser.value_int();
if (a == -1)
servo[servo_index].detach();
else
MOVE_SERVO(servo_index, a);
}
else
SERIAL_ECHO_MSG(" Servo ", servo_index, ": ", servo[servo_index].read());
}
else
SERIAL_ERROR_MSG("Servo ", servo_index, " out of range");
}
#endif // HAS_SERVOS

View File

@@ -0,0 +1,140 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_CUTTER
#include "../gcode.h"
#include "../../feature/spindle_laser.h"
#include "../../module/stepper.h"
/**
* Laser:
* M3 - Laser ON/Power (Ramped power)
* M4 - Laser ON/Power (Continuous power)
*
* Spindle:
* M3 - Spindle ON (Clockwise)
* M4 - Spindle ON (Counter-clockwise)
*
* Parameters:
* S<power> - Set power. S0 will turn the spindle/laser off, except in relative mode.
* O<ocr> - Set power and OCR (oscillator count register)
*
* If no PWM pin is defined then M3/M4 just turns it on.
*
* At least 12.8KHz (50Hz * 256) is needed for Spindle PWM.
* Hardware PWM is required on AVR. ISRs are too slow.
*
* NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
* No other settings give a PWM signal that goes from 0 to 5 volts.
*
* The system automatically sets WGM to Mode 1, so no special
* initialization is needed.
*
* WGM bits for timer 2 are automatically set by the system to
* Mode 1. This produces an acceptable 0 to 5 volt signal.
* No special initialization is needed.
*
* NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
* factors for timers 2, 3, 4, and 5 are acceptable.
*
* SPINDLE_LASER_ENA_PIN needs an external pullup or it may power on
* the spindle/laser during power-up or when connecting to the host
* (usually goes through a reset which sets all I/O pins to tri-state)
*
* PWM duty cycle goes from 0 (off) to 255 (always on).
*/
void GcodeSuite::M3_M4(const bool is_M4) {
auto get_s_power = [] {
if (parser.seenval('S')) {
const float spwr = parser.value_float();
#if ENABLED(SPINDLE_SERVO)
cutter.unitPower = spwr;
#else
cutter.unitPower = TERN(SPINDLE_LASER_PWM,
cutter.power_to_range(cutter_power_t(round(spwr))),
spwr > 0 ? 255 : 0);
#endif
}
else
cutter.unitPower = cutter.cpwr_to_upwr(SPEED_POWER_STARTUP);
return cutter.unitPower;
};
#if ENABLED(LASER_POWER_INLINE)
if (parser.seen('I') == DISABLED(LASER_POWER_INLINE_INVERT)) {
// Laser power in inline mode
cutter.inline_direction(is_M4); // Should always be unused
#if ENABLED(SPINDLE_LASER_PWM)
if (parser.seen('O')) {
cutter.unitPower = cutter.power_to_range(parser.value_byte(), 0);
cutter.inline_ocr_power(cutter.unitPower); // The OCR is a value from 0 to 255 (uint8_t)
}
else
cutter.inline_power(cutter.upower_to_ocr(get_s_power()));
#else
cutter.set_inline_enabled(true);
#endif
return;
}
// Non-inline, standard case
cutter.inline_disable(); // Prevent future blocks re-setting the power
#endif
planner.synchronize(); // Wait for previous movement commands (G0/G0/G2/G3) to complete before changing power
cutter.set_reverse(is_M4);
#if ENABLED(SPINDLE_LASER_PWM)
if (parser.seenval('O')) {
cutter.unitPower = cutter.power_to_range(parser.value_byte(), 0);
cutter.set_ocr_power(cutter.unitPower); // The OCR is a value from 0 to 255 (uint8_t)
}
else
cutter.set_power(cutter.upower_to_ocr(get_s_power()));
#elif ENABLED(SPINDLE_SERVO)
cutter.set_power(get_s_power());
#else
cutter.set_enabled(true);
#endif
cutter.menuPower = cutter.unitPower;
}
/**
* M5 - Cutter OFF (when moves are complete)
*/
void GcodeSuite::M5() {
#if ENABLED(LASER_POWER_INLINE)
if (parser.seen('I') == DISABLED(LASER_POWER_INLINE_INVERT)) {
cutter.set_inline_enabled(false); // Laser power in inline mode
return;
}
// Non-inline, standard case
cutter.inline_disable(); // Prevent future blocks re-setting the power
#endif
planner.synchronize();
cutter.set_enabled(false);
cutter.menuPower = cutter.unitPower;
}
#endif // HAS_CUTTER

View File

@@ -0,0 +1,64 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_MICROSTEPS
#include "../gcode.h"
#include "../../module/stepper.h"
/**
* M350: Set axis microstepping modes. S sets mode for all drivers.
*
* Warning: Steps-per-unit remains unchanged.
*/
void GcodeSuite::M350() {
if (parser.seen('S')) LOOP_LE_N(i, 4) stepper.microstep_mode(i, parser.value_byte());
LOOP_LOGICAL_AXES(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
stepper.microstep_readings();
}
/**
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S# determines MS1, MS2 or MS3, X# sets the pin high/low.
*/
void GcodeSuite::M351() {
if (parser.seenval('S')) switch (parser.value_byte()) {
case 1:
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1, -1);
if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1, -1);
break;
case 2:
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte(), -1);
if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte(), -1);
break;
case 3:
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, -1, parser.value_byte());
if (parser.seenval('B')) stepper.microstep_ms(4, -1, -1, parser.value_byte());
break;
}
stepper.microstep_readings();
}
#endif // HAS_MICROSTEPS

View File

@@ -0,0 +1,56 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if EITHER(EXT_SOLENOID, MANUAL_SOLENOID_CONTROL)
#include "../gcode.h"
#include "../../feature/solenoid.h"
#include "../../module/motion.h"
/**
* M380: Enable solenoid on the active extruder
*
* S<index> to specify a solenoid (Requires MANUAL_SOLENOID_CONTROL)
*/
void GcodeSuite::M380() {
#if ENABLED(MANUAL_SOLENOID_CONTROL)
enable_solenoid(parser.intval('S', active_extruder));
#else
enable_solenoid_on_active_extruder();
#endif
}
/**
* M381: Disable all solenoids if EXT_SOLENOID
* Disable selected/active solenoid if MANUAL_SOLENOID_CONTROL
*/
void GcodeSuite::M381() {
#if ENABLED(MANUAL_SOLENOID_CONTROL)
disable_solenoid(parser.intval('S', active_extruder));
#else
disable_all_solenoids();
#endif
}
#endif // EXT_SOLENOID || MANUAL_SOLENOID_CONTROL

View File

@@ -0,0 +1,33 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../module/stepper.h"
/**
* M400: Finish all moves
*/
void GcodeSuite::M400() {
planner.synchronize();
}

View File

@@ -0,0 +1,135 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(DIRECT_PIN_CONTROL)
#include "../gcode.h"
#include "../../MarlinCore.h" // for pin_is_protected
#if HAS_FAN
#include "../../module/temperature.h"
#endif
#ifdef MAPLE_STM32F1
// these are enums on the F1...
#define INPUT_PULLDOWN INPUT_PULLDOWN
#define INPUT_ANALOG INPUT_ANALOG
#define OUTPUT_OPEN_DRAIN OUTPUT_OPEN_DRAIN
#endif
void protected_pin_err() {
SERIAL_ERROR_MSG(STR_ERR_PROTECTED_PIN);
}
/**
* M42: Change pin status via GCode
*
* P<pin> Pin number (LED if omitted)
* For LPC1768 specify pin P1_02 as M42 P102,
* P1_20 as M42 P120, etc.
*
* S<byte> Pin status from 0 - 255
* I Flag to ignore Marlin's pin protection
*
* M<mode> Pin mode: 0=INPUT 1=OUTPUT 2=INPUT_PULLUP 3=INPUT_PULLDOWN
*/
void GcodeSuite::M42() {
const int pin_index = PARSED_PIN_INDEX('P', GET_PIN_MAP_INDEX(LED_PIN));
if (pin_index < 0) return;
const pin_t pin = GET_PIN_MAP_PIN(pin_index);
if (!parser.boolval('I') && pin_is_protected(pin)) return protected_pin_err();
bool avoidWrite = false;
if (parser.seenval('M')) {
switch (parser.value_byte()) {
case 0: pinMode(pin, INPUT); avoidWrite = true; break;
case 1: pinMode(pin, OUTPUT); break;
case 2: pinMode(pin, INPUT_PULLUP); avoidWrite = true; break;
#ifdef INPUT_PULLDOWN
case 3: pinMode(pin, INPUT_PULLDOWN); avoidWrite = true; break;
#endif
#ifdef INPUT_ANALOG
case 4: pinMode(pin, INPUT_ANALOG); avoidWrite = true; break;
#endif
#ifdef OUTPUT_OPEN_DRAIN
case 5: pinMode(pin, OUTPUT_OPEN_DRAIN); break;
#endif
default: SERIAL_ECHOLNPGM("Invalid Pin Mode"); return;
}
}
if (!parser.seenval('S')) return;
const byte pin_status = parser.value_byte();
#if HAS_FAN
switch (pin) {
#if HAS_FAN0
case FAN0_PIN: thermalManager.fan_speed[0] = pin_status; return;
#endif
#if HAS_FAN1
case FAN1_PIN: thermalManager.fan_speed[1] = pin_status; return;
#endif
#if HAS_FAN2
case FAN2_PIN: thermalManager.fan_speed[2] = pin_status; return;
#endif
#if HAS_FAN3
case FAN3_PIN: thermalManager.fan_speed[3] = pin_status; return;
#endif
#if HAS_FAN4
case FAN4_PIN: thermalManager.fan_speed[4] = pin_status; return;
#endif
#if HAS_FAN5
case FAN5_PIN: thermalManager.fan_speed[5] = pin_status; return;
#endif
#if HAS_FAN6
case FAN6_PIN: thermalManager.fan_speed[6] = pin_status; return;
#endif
#if HAS_FAN7
case FAN7_PIN: thermalManager.fan_speed[7] = pin_status; return;
#endif
}
#endif
if (avoidWrite) {
SERIAL_ECHOLNPGM("?Cannot write to INPUT");
return;
}
// An OUTPUT_OPEN_DRAIN should not be changed to normal OUTPUT (STM32)
// Use M42 Px M1/5 S0/1 to set the output type and then set value
#ifndef OUTPUT_OPEN_DRAIN
pinMode(pin, OUTPUT);
#endif
extDigitalWrite(pin, pin_status);
#ifdef ARDUINO_ARCH_STM32
// A simple I/O will be set to 0 by analogWrite()
if (pin_status <= 1) return;
#endif
analogWrite(pin, pin_status);
}
#endif // DIRECT_PIN_CONTROL

View File

@@ -0,0 +1,190 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_DUPLICATION_MODE
//#define DEBUG_DXC_MODE
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/tool_change.h"
#include "../../module/planner.h"
#define DEBUG_OUT ENABLED(DEBUG_DXC_MODE)
#include "../../core/debug_out.h"
#if ENABLED(DUAL_X_CARRIAGE)
/**
* M605: Set dual x-carriage movement mode
*
* M605 S0 : (FULL_CONTROL) The slicer has full control over both X-carriages and can achieve optimal travel
* results as long as it supports dual X-carriages.
*
* M605 S1 : (AUTO_PARK) The firmware automatically parks and unparks the X-carriages on tool-change so that
* additional slicer support is not required.
*
* M605 S2 X R : (DUPLICATION) The firmware moves the second X-carriage and extruder in synchronization with
* the first X-carriage and extruder, to print 2 copies of the same object at the same time.
* Set the constant X-offset and temperature differential with M605 S2 X[offs] R[deg] and
* follow with "M605 S2" to initiate duplicated movement. For example, use "M605 S2 X100 R2" to
* make a copy 100mm to the right with E1 2° hotter than E0.
*
* M605 S3 : (MIRRORED) Formbot/Vivedino-inspired mirrored mode in which the second extruder duplicates
* the movement of the first except the second extruder is reversed in the X axis.
* The temperature differential and initial X offset must be set with "M605 S2 X[offs] R[deg]",
* then followed by "M605 S3" to initiate mirrored movement.
*
* M605 W : IDEX What? command.
*
* Note: the X axis should be homed after changing Dual X-carriage mode.
*/
void GcodeSuite::M605() {
planner.synchronize();
if (parser.seen('S')) {
const DualXMode previous_mode = dual_x_carriage_mode;
dual_x_carriage_mode = (DualXMode)parser.value_byte();
idex_set_mirrored_mode(false);
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE:
break;
case DXC_DUPLICATION_MODE:
// Set the X offset, but no less than the safety gap
if (parser.seen('X')) duplicate_extruder_x_offset = _MAX(parser.value_linear_units(), (X2_MIN_POS) - (X1_MIN_POS));
if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
// Always switch back to tool 0
if (active_extruder != 0) tool_change(0);
break;
case DXC_MIRRORED_MODE: {
if (previous_mode != DXC_DUPLICATION_MODE) {
SERIAL_ECHOLNPGM("Printer must be in DXC_DUPLICATION_MODE prior to ");
SERIAL_ECHOLNPGM("specifying DXC_MIRRORED_MODE.");
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
return;
}
idex_set_mirrored_mode(true);
// Do a small 'jog' motion in the X axis
xyze_pos_t dest = current_position; dest.x -= 0.1f;
for (uint8_t i = 2; --i;) {
planner.buffer_line(dest, feedrate_mm_s, 0);
dest.x += 0.1f;
}
} return;
default:
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
break;
}
idex_set_parked(false);
set_duplication_enabled(false);
#ifdef EVENT_GCODE_IDEX_AFTER_MODECHANGE
gcode.process_subcommands_now_P(PSTR(EVENT_GCODE_IDEX_AFTER_MODECHANGE));
#endif
}
else if (!parser.seen('W')) // if no S or W parameter, the DXC mode gets reset to the user's default
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
#ifdef DEBUG_DXC_MODE
if (parser.seen('W')) {
DEBUG_ECHO_START();
DEBUG_ECHOPGM("Dual X Carriage Mode ");
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE: DEBUG_ECHOPGM("FULL_CONTROL"); break;
case DXC_AUTO_PARK_MODE: DEBUG_ECHOPGM("AUTO_PARK"); break;
case DXC_DUPLICATION_MODE: DEBUG_ECHOPGM("DUPLICATION"); break;
case DXC_MIRRORED_MODE: DEBUG_ECHOPGM("MIRRORED"); break;
}
DEBUG_ECHOPAIR("\nActive Ext: ", active_extruder);
if (!active_extruder_parked) DEBUG_ECHOPGM(" NOT ");
DEBUG_ECHOPGM(" parked.");
DEBUG_ECHOPAIR("\nactive_extruder_x_pos: ", current_position.x);
DEBUG_ECHOPAIR("\ninactive_extruder_x: ", inactive_extruder_x);
DEBUG_ECHOPAIR("\nextruder_duplication_enabled: ", extruder_duplication_enabled);
DEBUG_ECHOPAIR("\nduplicate_extruder_x_offset: ", duplicate_extruder_x_offset);
DEBUG_ECHOPAIR("\nduplicate_extruder_temp_offset: ", duplicate_extruder_temp_offset);
DEBUG_ECHOPAIR("\ndelayed_move_time: ", delayed_move_time);
DEBUG_ECHOPAIR("\nX1 Home X: ", x_home_pos(0), "\nX1_MIN_POS=", X1_MIN_POS, "\nX1_MAX_POS=", X1_MAX_POS);
DEBUG_ECHOPAIR("\nX2 Home X: ", x_home_pos(1), "\nX2_MIN_POS=", X2_MIN_POS, "\nX2_MAX_POS=", X2_MAX_POS);
DEBUG_ECHOPAIR("\nX2_HOME_DIR=", X2_HOME_DIR, "\nX2_HOME_POS=", X2_HOME_POS);
DEBUG_ECHOPAIR("\nDEFAULT_DUAL_X_CARRIAGE_MODE=", STRINGIFY(DEFAULT_DUAL_X_CARRIAGE_MODE));
DEBUG_ECHOPAIR("\toolchange_settings.z_raise=", toolchange_settings.z_raise);
DEBUG_ECHOPAIR("\nDEFAULT_DUPLICATION_X_OFFSET=", DEFAULT_DUPLICATION_X_OFFSET);
DEBUG_EOL();
HOTEND_LOOP() {
DEBUG_ECHOPAIR_P(SP_T_STR, e);
LOOP_LINEAR_AXES(a) DEBUG_ECHOPAIR(" hotend_offset[", e, "].", AS_CHAR(AXIS_CHAR(a) | 0x20), "=", hotend_offset[e][a]);
DEBUG_EOL();
}
DEBUG_EOL();
}
#endif // DEBUG_DXC_MODE
}
#elif ENABLED(MULTI_NOZZLE_DUPLICATION)
/**
* M605: Set multi-nozzle duplication mode
*
* S2 - Enable duplication mode
* P[mask] - Bit-mask of nozzles to include in the duplication set.
* A value of 0 disables duplication.
* E[index] - Last nozzle index to include in the duplication set.
* A value of 0 disables duplication.
*/
void GcodeSuite::M605() {
bool ena = false;
if (parser.seen("EPS")) {
planner.synchronize();
if (parser.seenval('P')) duplication_e_mask = parser.value_int(); // Set the mask directly
else if (parser.seenval('E')) duplication_e_mask = pow(2, parser.value_int() + 1) - 1; // Set the mask by E index
ena = (2 == parser.intval('S', extruder_duplication_enabled ? 2 : 0));
set_duplication_enabled(ena && (duplication_e_mask >= 3));
}
SERIAL_ECHO_START();
SERIAL_ECHOPGM(STR_DUPLICATION_MODE);
serialprint_onoff(extruder_duplication_enabled);
if (ena) {
SERIAL_ECHOPGM(" ( ");
HOTEND_LOOP() if (TEST(duplication_e_mask, e)) { SERIAL_ECHO(e); SERIAL_CHAR(' '); }
SERIAL_CHAR(')');
}
SERIAL_EOL();
}
#endif // MULTI_NOZZLE_DUPLICATION
#endif // HAS_DUPICATION_MODE

View File

@@ -0,0 +1,77 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfigPre.h"
#if ANY(COOLANT_MIST, COOLANT_FLOOD, AIR_ASSIST)
#include "../gcode.h"
#include "../../module/planner.h"
#if ENABLED(COOLANT_MIST)
/**
* M7: Mist Coolant On
*/
void GcodeSuite::M7() {
planner.synchronize(); // Wait for move to arrive
WRITE(COOLANT_MIST_PIN, !(COOLANT_MIST_INVERT)); // Turn on Mist coolant
}
#endif
#if EITHER(COOLANT_FLOOD, AIR_ASSIST)
#if ENABLED(AIR_ASSIST)
#include "../../feature/spindle_laser.h"
#endif
/**
* M8: Flood Coolant / Air Assist ON
*/
void GcodeSuite::M8() {
planner.synchronize(); // Wait for move to arrive
#if ENABLED(COOLANT_FLOOD)
WRITE(COOLANT_FLOOD_PIN, !(COOLANT_FLOOD_INVERT)); // Turn on Flood coolant
#endif
#if ENABLED(AIR_ASSIST)
cutter.air_assist_enable(); // Turn on Air Assist
#endif
}
#endif
/**
* M9: Coolant / Air Assist OFF
*/
void GcodeSuite::M9() {
planner.synchronize(); // Wait for move to arrive
#if ENABLED(COOLANT_MIST)
WRITE(COOLANT_MIST_PIN, COOLANT_MIST_INVERT); // Turn off Mist coolant
#endif
#if ENABLED(COOLANT_FLOOD)
WRITE(COOLANT_FLOOD_PIN, COOLANT_FLOOD_INVERT); // Turn off Flood coolant
#endif
#if ENABLED(AIR_ASSIST)
cutter.air_assist_disable(); // Turn off Air Assist
#endif
}
#endif // COOLANT_MIST | COOLANT_FLOOD | AIR_ASSIST

View File

@@ -0,0 +1,99 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../module/temperature.h"
#include "../../module/planner.h" // for planner.finish_and_disable
#include "../../module/printcounter.h" // for print_job_timer.stop
#include "../../lcd/marlinui.h" // for LCD_MESSAGEPGM_P
#include "../../inc/MarlinConfig.h"
#if ENABLED(PSU_CONTROL)
#include "../queue.h"
#include "../../feature/power.h"
#endif
#if HAS_SUICIDE
#include "../../MarlinCore.h"
#endif
#if ENABLED(PSU_CONTROL)
/**
* M80 : Turn on the Power Supply
* M80 S : Report the current state and exit
*/
void GcodeSuite::M80() {
// S: Report the current power supply state and exit
if (parser.seen('S')) {
SERIAL_ECHOPGM_P(powerManager.psu_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
return;
}
powerManager.power_on();
/**
* If you have a switch on suicide pin, this is useful
* if you want to start another print with suicide feature after
* a print without suicide...
*/
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, !SUICIDE_PIN_INVERTING);
#endif
TERN_(HAS_LCD_MENU, ui.reset_status());
}
#endif // PSU_CONTROL
/**
* M81: Turn off Power, including Power Supply, if there is one.
*
* This code should ALWAYS be available for FULL SHUTDOWN!
*/
void GcodeSuite::M81() {
thermalManager.disable_all_heaters();
planner.finish_and_disable();
print_job_timer.stop();
#if HAS_FAN
thermalManager.zero_fan_speeds();
#if ENABLED(PROBING_FANS_OFF)
thermalManager.fans_paused = false;
ZERO(thermalManager.saved_fan_speed);
#endif
#endif
safe_delay(1000); // Wait 1 second before switching off
#if HAS_SUICIDE
suicide();
#elif ENABLED(PSU_CONTROL)
powerManager.power_off_soon();
#endif
LCD_MESSAGEPGM_P(PSTR(MACHINE_NAME " " STR_OFF "."));
}

View File

@@ -0,0 +1,35 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
/**
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
*/
void GcodeSuite::M85() {
if (parser.seen('S')) {
reset_stepper_timeout();
max_inactive_time = parser.value_millis_from_seconds();
}
}

View File

@@ -0,0 +1,88 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ALL(HAS_SPI_FLASH, SDSUPPORT, MARLIN_DEV_MODE)
#include "../gcode.h"
#include "../../sd/cardreader.h"
#include "../../libs/W25Qxx.h"
/**
* M993: Backup SPI Flash to SD
*/
void GcodeSuite::M993() {
if (!card.isMounted()) card.mount();
char fname[] = "spiflash.bin";
card.openFileWrite(fname);
if (!card.isFileOpen()) {
SERIAL_ECHOLNPAIR("Failed to open ", fname, " to write.");
return;
}
uint8_t buf[1024];
uint32_t addr = 0;
W25QXX.init(SPI_QUARTER_SPEED);
SERIAL_ECHOPGM("Save SPI Flash");
while (addr < SPI_FLASH_SIZE) {
W25QXX.SPI_FLASH_BufferRead(buf, addr, COUNT(buf));
addr += COUNT(buf);
card.write(buf, COUNT(buf));
if (addr % (COUNT(buf) * 10) == 0) SERIAL_CHAR('.');
}
SERIAL_ECHOLNPGM(" done");
card.closefile();
}
/**
* M994: Load a backup from SD to SPI Flash
*/
void GcodeSuite::M994() {
if (!card.isMounted()) card.mount();
char fname[] = "spiflash.bin";
card.openFileRead(fname);
if (!card.isFileOpen()) {
SERIAL_ECHOLNPAIR("Failed to open ", fname, " to read.");
return;
}
uint8_t buf[1024];
uint32_t addr = 0;
W25QXX.init(SPI_QUARTER_SPEED);
W25QXX.SPI_FLASH_BulkErase();
SERIAL_ECHOPGM("Load SPI Flash");
while (addr < SPI_FLASH_SIZE) {
card.read(buf, COUNT(buf));
W25QXX.SPI_FLASH_BufferWrite(buf, addr, COUNT(buf));
addr += COUNT(buf);
if (addr % (COUNT(buf) * 10) == 0) SERIAL_CHAR('.');
}
SERIAL_ECHOLNPGM(" done");
card.closefile();
}
#endif // HAS_SPI_FLASH && SDSUPPORT && MARLIN_DEV_MODE

View File

@@ -0,0 +1,36 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#if ENABLED(PLATFORM_M997_SUPPORT)
/**
* M997: Perform in-application firmware update
*/
void GcodeSuite::M997() {
flashFirmware(parser.intval('S'));
}
#endif

View File

@@ -0,0 +1,45 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../lcd/marlinui.h" // for lcd_reset_alert_level
#include "../../MarlinCore.h" // for marlin_state
#include "../queue.h" // for flush_and_request_resend
/**
* M999: Restart after being stopped
*
* Default behavior is to flush the serial buffer and request
* a resend to the host starting on the last N line received.
*
* Sending "M999 S1" will resume printing without flushing the
* existing command buffer.
*/
void GcodeSuite::M999() {
marlin_state = MF_RUNNING;
ui.reset_alert_level();
if (parser.boolval('S')) return;
queue.flush_and_request_resend(queue.ring_buffer.command_port());
}

View File

@@ -0,0 +1,70 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../module/tool_change.h"
#if EITHER(HAS_MULTI_EXTRUDER, DEBUG_LEVELING_FEATURE)
#include "../../module/motion.h"
#endif
#if HAS_PRUSA_MMU2
#include "../../feature/mmu/mmu2.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
/**
* T0-T<n>: Switch tool, usually switching extruders
*
* F[units/min] Set the movement feedrate
* S1 Don't move the tool in XY after change
*
* For PRUSA_MMU2(S) and EXTENDABLE_EMU_MMU2(S)
* T[n] Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
* T? Gcode to extrude shouldn't have to follow. Load to extruder wheels is done automatically.
* Tx Same as T?, but nozzle doesn't have to be preheated. Tc requires a preheated nozzle to finish filament load.
* Tc Load to nozzle after filament was prepared by Tc and nozzle is already heated.
*/
void GcodeSuite::T(const int8_t tool_index) {
DEBUG_SECTION(log_T, "T", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("...(", tool_index, ")");
// Count this command as movement / activity
reset_stepper_timeout();
#if HAS_PRUSA_MMU2
if (parser.string_arg) {
mmu2.tool_change(parser.string_arg); // Special commands T?/Tx/Tc
return;
}
#endif
tool_change(tool_index
#if HAS_MULTI_EXTRUDER
, TERN(PARKING_EXTRUDER, false, tool_index == active_extruder) // For PARKING_EXTRUDER motion is decided in tool_change()
|| parser.boolval('S')
#endif
);
}

View File

@@ -0,0 +1,104 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../gcode.h"
#include "../../module/settings.h"
#include "../../core/serial.h"
#include "../../inc/MarlinConfig.h"
/**
* M500: Store settings in EEPROM
*/
void GcodeSuite::M500() {
(void)settings.save();
}
/**
* M501: Read settings from EEPROM
*/
void GcodeSuite::M501() {
(void)settings.load();
}
/**
* M502: Revert to default settings
*/
void GcodeSuite::M502() {
(void)settings.reset();
}
#if DISABLED(DISABLE_M503)
/**
* M503: print settings currently in memory
*/
void GcodeSuite::M503() {
(void)settings.report(!parser.boolval('S', true));
}
#endif // !DISABLE_M503
#if ENABLED(EEPROM_SETTINGS)
#if ENABLED(MARLIN_DEV_MODE)
#include "../../libs/hex_print.h"
#endif
/**
* M504: Validate EEPROM Contents
*/
void GcodeSuite::M504() {
#if ENABLED(MARLIN_DEV_MODE)
const bool dowrite = parser.seenval('W');
if (dowrite || parser.seenval('R')) {
uint8_t val = 0;
int addr = parser.value_ushort();
if (dowrite) {
val = parser.byteval('V');
persistentStore.write_data(addr, &val);
SERIAL_ECHOLNPAIR("Wrote address ", addr, " with ", val);
}
else {
if (parser.seenval('T')) {
const int endaddr = parser.value_ushort();
while (addr <= endaddr) {
persistentStore.read_data(addr, &val);
SERIAL_ECHOLNPAIR("0x", hex_word(addr), ":", hex_byte(val));
addr++;
safe_delay(10);
}
SERIAL_EOL();
}
else {
persistentStore.read_data(addr, &val);
SERIAL_ECHOLNPAIR("Read address ", addr, " and got ", val);
}
}
return;
}
#endif
if (settings.validate())
SERIAL_ECHO_MSG("EEPROM OK");
}
#endif

View File

@@ -0,0 +1,151 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_L64XX
#include "../../gcode.h"
#include "../../../libs/L64XX/L64XX_Marlin.h"
#include "../../../module/stepper/indirection.h"
void echo_yes_no(const bool yes);
inline void L6470_say_status(const L64XX_axis_t axis) {
if (L64xxManager.spi_abort) return;
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
L64xxManager.get_status(axis);
L64xxManager.say_axis(axis);
#if ENABLED(L6470_CHITCHAT)
char temp_buf[20];
sprintf_P(temp_buf, PSTR(" status: %4x "), sh.STATUS_AXIS_RAW);
SERIAL_ECHO(temp_buf);
print_bin(sh.STATUS_AXIS_RAW);
switch (sh.STATUS_AXIS_LAYOUT) {
case L6470_STATUS_LAYOUT: SERIAL_ECHOPGM(" L6470"); break;
case L6474_STATUS_LAYOUT: SERIAL_ECHOPGM(" L6474"); break;
case L6480_STATUS_LAYOUT: SERIAL_ECHOPGM(" L6480/powerSTEP01"); break;
}
#endif
SERIAL_ECHOPGM("\n...OUTPUT: ");
SERIAL_ECHOPGM_P(sh.STATUS_AXIS & STATUS_HIZ ? PSTR("OFF") : PSTR("ON "));
SERIAL_ECHOPGM(" BUSY: "); echo_yes_no((sh.STATUS_AXIS & STATUS_BUSY) == 0);
SERIAL_ECHOPGM(" DIR: ");
SERIAL_ECHOPGM_P((((sh.STATUS_AXIS & STATUS_DIR) >> 4) ^ L64xxManager.index_to_dir[axis]) ? PSTR("FORWARD") : PSTR("REVERSE"));
if (sh.STATUS_AXIS_LAYOUT == L6480_STATUS_LAYOUT) {
SERIAL_ECHOPGM(" Last Command: ");
if (sh.STATUS_AXIS & sh.STATUS_AXIS_WRONG_CMD) SERIAL_ECHOPGM("VALID");
else SERIAL_ECHOPGM("ERROR");
SERIAL_ECHOPGM("\n...THERMAL: ");
switch ((sh.STATUS_AXIS & (sh.STATUS_AXIS_TH_SD | sh.STATUS_AXIS_TH_WRN)) >> 11) {
case 0: SERIAL_ECHOPGM("DEVICE SHUTDOWN"); break;
case 1: SERIAL_ECHOPGM("BRIDGE SHUTDOWN"); break;
case 2: SERIAL_ECHOPGM("WARNING "); break;
case 3: SERIAL_ECHOPGM("OK "); break;
}
}
else {
SERIAL_ECHOPGM(" Last Command: ");
if (!(sh.STATUS_AXIS & sh.STATUS_AXIS_WRONG_CMD)) SERIAL_ECHOPGM("IN");
SERIAL_ECHOPGM("VALID ");
SERIAL_ECHOPGM_P(sh.STATUS_AXIS & sh.STATUS_AXIS_NOTPERF_CMD ? PSTR("COMPLETED ") : PSTR("Not PERFORMED"));
SERIAL_ECHOPAIR("\n...THERMAL: ", !(sh.STATUS_AXIS & sh.STATUS_AXIS_TH_SD) ? "SHUTDOWN " : !(sh.STATUS_AXIS & sh.STATUS_AXIS_TH_WRN) ? "WARNING " : "OK ");
}
SERIAL_ECHOPGM(" OVERCURRENT:"); echo_yes_no((sh.STATUS_AXIS & sh.STATUS_AXIS_OCD) == 0);
if (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT) {
SERIAL_ECHOPGM(" STALL:"); echo_yes_no((sh.STATUS_AXIS & sh.STATUS_AXIS_STEP_LOSS_A) == 0 || (sh.STATUS_AXIS & sh.STATUS_AXIS_STEP_LOSS_B) == 0);
SERIAL_ECHOPGM(" STEP-CLOCK MODE:"); echo_yes_no((sh.STATUS_AXIS & sh.STATUS_AXIS_SCK_MOD) != 0);
}
else {
SERIAL_ECHOPGM(" STALL: NA "
" STEP-CLOCK MODE: NA"
" UNDER VOLTAGE LOCKOUT: "); echo_yes_no((sh.STATUS_AXIS & sh.STATUS_AXIS_UVLO) == 0);
}
SERIAL_EOL();
}
/**
* M122: Debug L6470 drivers
*/
void GcodeSuite::M122() {
L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
L64xxManager.spi_active = true; // Tell set_directions() a series of SPI transfers is underway
//if (parser.seen('S'))
// tmc_set_report_interval(parser.value_bool());
//else
#if AXIS_IS_L64XX(X)
L6470_say_status(X);
#endif
#if AXIS_IS_L64XX(X2)
L6470_say_status(X2);
#endif
#if AXIS_IS_L64XX(Y)
L6470_say_status(Y);
#endif
#if AXIS_IS_L64XX(Y2)
L6470_say_status(Y2);
#endif
#if AXIS_IS_L64XX(Z)
L6470_say_status(Z);
#endif
#if AXIS_IS_L64XX(Z2)
L6470_say_status(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
L6470_say_status(Z3);
#endif
#if AXIS_IS_L64XX(Z4)
L6470_say_status(Z4);
#endif
#if AXIS_IS_L64XX(E0)
L6470_say_status(E0);
#endif
#if AXIS_IS_L64XX(E1)
L6470_say_status(E1);
#endif
#if AXIS_IS_L64XX(E2)
L6470_say_status(E2);
#endif
#if AXIS_IS_L64XX(E3)
L6470_say_status(E3);
#endif
#if AXIS_IS_L64XX(E4)
L6470_say_status(E4);
#endif
#if AXIS_IS_L64XX(E5)
L6470_say_status(E5);
#endif
#if AXIS_IS_L64XX(E6)
L6470_say_status(E6);
#endif
#if AXIS_IS_L64XX(E7)
L6470_say_status(E7);
#endif
L64xxManager.spi_active = false; // done with all SPI transfers - clear handshake flags
L64xxManager.spi_abort = false;
L64xxManager.pause_monitor(false);
}
#endif // HAS_L64XX

View File

@@ -0,0 +1,376 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_L64XX
#include "../../gcode.h"
#include "../../../libs/L64XX/L64XX_Marlin.h"
#include "../../../module/stepper/indirection.h"
#include "../../../module/planner.h"
#define DEBUG_OUT ENABLED(L6470_CHITCHAT)
#include "../../../core/debug_out.h"
/**
* MACRO to fetch information on the items associated with current limiting
* and maximum voltage output.
*
* L6470 can be setup to shutdown if either current threshold is exceeded.
*
* L6470 output current can not be set directly. It is set indirectly by
* setting the maximum effective output voltage.
*
* Effective output voltage is set by PWM duty cycle.
*
* Maximum effective output voltage is affected by MANY variables. The main ones are:
* KVAL_HOLD
* KVAL_RUN
* KVAL_ACC
* KVAL_DEC
* Vs compensation (if enabled)
*/
void L64XX_report_current(L64XX &motor, const L64XX_axis_t axis) {
if (L64xxManager.spi_abort) return; // don't do anything if set_directions() has occurred
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
const uint16_t status = L64xxManager.get_status(axis); //also populates shadow structure
const uint8_t OverCurrent_Threshold = uint8_t(motor.GetParam(L6470_OCD_TH));
auto say_axis_status = [](const L64XX_axis_t axis, const uint16_t status) {
L64xxManager.say_axis(axis);
#if ENABLED(L6470_CHITCHAT)
char tmp[10];
sprintf_P(tmp, PSTR("%4x "), status);
DEBUG_ECHOPAIR(" status: ", tmp);
print_bin(status);
#else
UNUSED(status);
#endif
SERIAL_EOL();
};
char temp_buf[10];
switch (sh.STATUS_AXIS_LAYOUT) {
case L6470_STATUS_LAYOUT: // L6470
case L6480_STATUS_LAYOUT: { // L6480 & powerstep01
const uint16_t Stall_Threshold = (uint8_t)motor.GetParam(L6470_STALL_TH),
motor_status = (status & (STATUS_MOT_STATUS)) >> 5,
L6470_ADC_out = motor.GetParam(L6470_ADC_OUT),
L6470_ADC_out_limited = constrain(L6470_ADC_out, 8, 24);
const float comp_coef = 1600.0f / L6470_ADC_out_limited;
const uint16_t MicroSteps = _BV(motor.GetParam(L6470_STEP_MODE) & 0x07);
say_axis_status(axis, sh.STATUS_AXIS_RAW);
SERIAL_ECHOPGM("...OverCurrent Threshold: ");
sprintf_P(temp_buf, PSTR("%2d ("), OverCurrent_Threshold);
SERIAL_ECHO(temp_buf);
SERIAL_ECHO((OverCurrent_Threshold + 1) * motor.OCD_CURRENT_CONSTANT_INV);
SERIAL_ECHOPGM(" mA)");
SERIAL_ECHOPGM(" Stall Threshold: ");
sprintf_P(temp_buf, PSTR("%2d ("), Stall_Threshold);
SERIAL_ECHO(temp_buf);
SERIAL_ECHO((Stall_Threshold + 1) * motor.STALL_CURRENT_CONSTANT_INV);
SERIAL_ECHOPGM(" mA)");
SERIAL_ECHOPGM(" Motor Status: ");
switch (motor_status) {
case 0: SERIAL_ECHOPGM("stopped"); break;
case 1: SERIAL_ECHOPGM("accelerating"); break;
case 2: SERIAL_ECHOPGM("decelerating"); break;
case 3: SERIAL_ECHOPGM("at constant speed"); break;
}
SERIAL_EOL();
SERIAL_ECHOPAIR("...MicroSteps: ", MicroSteps,
" ADC_OUT: ", L6470_ADC_out);
SERIAL_ECHOPGM(" Vs_compensation: ");
SERIAL_ECHOPGM_P((motor.GetParam(sh.L6470_AXIS_CONFIG) & CONFIG_EN_VSCOMP) ? PSTR("ENABLED ") : PSTR("DISABLED"));
SERIAL_ECHOLNPAIR(" Compensation coefficient: ~", comp_coef * 0.01f);
SERIAL_ECHOPAIR("...KVAL_HOLD: ", motor.GetParam(L6470_KVAL_HOLD),
" KVAL_RUN : ", motor.GetParam(L6470_KVAL_RUN),
" KVAL_ACC: ", motor.GetParam(L6470_KVAL_ACC),
" KVAL_DEC: ", motor.GetParam(L6470_KVAL_DEC),
" V motor max = ");
switch (motor_status) {
case 0: SERIAL_ECHO(motor.GetParam(L6470_KVAL_HOLD) * 100 / 256); SERIAL_ECHOPGM("% (KVAL_HOLD)"); break;
case 1: SERIAL_ECHO(motor.GetParam(L6470_KVAL_RUN) * 100 / 256); SERIAL_ECHOPGM("% (KVAL_RUN)"); break;
case 2: SERIAL_ECHO(motor.GetParam(L6470_KVAL_ACC) * 100 / 256); SERIAL_ECHOPGM("% (KVAL_ACC)"); break;
case 3: SERIAL_ECHO(motor.GetParam(L6470_KVAL_DEC) * 100 / 256); SERIAL_ECHOPGM("% (KVAL_HOLD)"); break;
}
SERIAL_EOL();
#if ENABLED(L6470_CHITCHAT)
DEBUG_ECHOPGM("...SLEW RATE: ");
switch (sh.STATUS_AXIS_LAYOUT) {
case L6470_STATUS_LAYOUT: {
switch ((motor.GetParam(sh.L6470_AXIS_CONFIG) & CONFIG_POW_SR) >> CONFIG_POW_SR_BIT) {
case 0: { DEBUG_ECHOLNPGM("320V/uS") ; break; }
case 1: { DEBUG_ECHOLNPGM("75V/uS") ; break; }
case 2: { DEBUG_ECHOLNPGM("110V/uS") ; break; }
case 3: { DEBUG_ECHOLNPGM("260V/uS") ; break; }
}
break;
}
case L6480_STATUS_LAYOUT: {
switch (motor.GetParam(L6470_GATECFG1) & CONFIG1_SR ) {
case CONFIG1_SR_220V_us: { DEBUG_ECHOLNPGM("220V/uS") ; break; }
case CONFIG1_SR_400V_us: { DEBUG_ECHOLNPGM("400V/uS") ; break; }
case CONFIG1_SR_520V_us: { DEBUG_ECHOLNPGM("520V/uS") ; break; }
case CONFIG1_SR_980V_us: { DEBUG_ECHOLNPGM("980V/uS") ; break; }
default: { DEBUG_ECHOLNPGM("unknown") ; break; }
}
}
}
#endif
SERIAL_EOL();
break;
}
case L6474_STATUS_LAYOUT: { // L6474
const uint16_t L6470_ADC_out = motor.GetParam(L6470_ADC_OUT) & 0x1F,
L6474_TVAL_val = motor.GetParam(L6474_TVAL) & 0x7F;
say_axis_status(axis, sh.STATUS_AXIS_RAW);
SERIAL_ECHOPGM("...OverCurrent Threshold: ");
sprintf_P(temp_buf, PSTR("%2d ("), OverCurrent_Threshold);
SERIAL_ECHO(temp_buf);
SERIAL_ECHO((OverCurrent_Threshold + 1) * motor.OCD_CURRENT_CONSTANT_INV);
SERIAL_ECHOPGM(" mA)");
SERIAL_ECHOPGM(" TVAL: ");
sprintf_P(temp_buf, PSTR("%2d ("), L6474_TVAL_val);
SERIAL_ECHO(temp_buf);
SERIAL_ECHO((L6474_TVAL_val + 1) * motor.STALL_CURRENT_CONSTANT_INV);
SERIAL_ECHOLNPGM(" mA) Motor Status: NA");
const uint16_t MicroSteps = _BV(motor.GetParam(L6470_STEP_MODE) & 0x07); //NOMORE(MicroSteps, 16);
SERIAL_ECHOPAIR("...MicroSteps: ", MicroSteps,
" ADC_OUT: ", L6470_ADC_out);
SERIAL_ECHOLNPGM(" Vs_compensation: NA\n");
SERIAL_ECHOLNPGM("...KVAL_HOLD: NA"
" KVAL_RUN : NA"
" KVAL_ACC: NA"
" KVAL_DEC: NA"
" V motor max = NA");
#if ENABLED(L6470_CHITCHAT)
DEBUG_ECHOPGM("...SLEW RATE: ");
switch ((motor.GetParam(sh.L6470_AXIS_CONFIG) & CONFIG_POW_SR) >> CONFIG_POW_SR_BIT) {
case 0: DEBUG_ECHOLNPGM("320V/uS") ; break;
case 1: DEBUG_ECHOLNPGM("75V/uS") ; break;
case 2: DEBUG_ECHOLNPGM("110V/uS") ; break;
case 3: DEBUG_ECHOLNPGM("260V/uS") ; break;
default: DEBUG_ECHOLNPAIR("slew rate: ", (motor.GetParam(sh.L6470_AXIS_CONFIG) & CONFIG_POW_SR) >> CONFIG_POW_SR_BIT); break;
}
#endif
SERIAL_EOL();
SERIAL_EOL();
break;
}
}
}
/**
* M906: report or set KVAL_HOLD which sets the maximum effective voltage provided by the
* PWMs to the steppers
*
* On L6474 this sets the TVAL register (same address).
*
* I - select which driver(s) to change on multi-driver axis
* 0 - (default) all drivers on the axis or E0
* 1 - monitor only X, Y, Z or E1
* 2 - monitor only X2, Y2, Z2 or E2
* 3 - monitor only Z3 or E3
* 4 - monitor only Z4 or E4
* 5 - monitor only E5
* Xxxx, Yxxx, Zxxx, Exxx - axis to change (optional)
* L6474 - current in mA (4A max)
* All others - 0-255
*
* Sets KVAL_HOLD which affects the current being driven through the stepper.
*
* L6470 is used in the STEP-CLOCK mode. KVAL_HOLD is the only KVAL_xxx
* that affects the effective voltage seen by the stepper.
*/
void GcodeSuite::M906() {
L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
#define L6470_SET_KVAL_HOLD(Q) (AXIS_IS_L64XX(Q) ? stepper##Q.setTVALCurrent(value) : stepper##Q.SetParam(L6470_KVAL_HOLD, uint8_t(value)))
DEBUG_ECHOLNPGM("M906");
uint8_t report_current = true;
#if HAS_L64XX
const uint8_t index = parser.byteval('I');
#endif
LOOP_LOGICAL_AXES(i) if (uint16_t value = parser.intval(axis_codes[i])) {
report_current = false;
if (planner.has_blocks_queued() || planner.cleaning_buffer_counter) {
SERIAL_ECHOLNPGM("Test aborted. Can't set KVAL_HOLD while steppers are moving.");
return;
}
switch (i) {
case X_AXIS:
#if AXIS_IS_L64XX(X)
if (index == 0) L6470_SET_KVAL_HOLD(X);
#endif
#if AXIS_IS_L64XX(X2)
if (index == 1) L6470_SET_KVAL_HOLD(X2);
#endif
break;
#if HAS_Y_AXIS
case Y_AXIS:
#if AXIS_IS_L64XX(Y)
if (index == 0) L6470_SET_KVAL_HOLD(Y);
#endif
#if AXIS_IS_L64XX(Y2)
if (index == 1) L6470_SET_KVAL_HOLD(Y2);
#endif
break;
#endif
#if HAS_Z_AXIS
case Z_AXIS:
#if AXIS_IS_L64XX(Z)
if (index == 0) L6470_SET_KVAL_HOLD(Z);
#endif
#if AXIS_IS_L64XX(Z2)
if (index == 1) L6470_SET_KVAL_HOLD(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
if (index == 2) L6470_SET_KVAL_HOLD(Z3);
#endif
#if AXIS_DRIVER_TYPE_Z4(L6470)
if (index == 3) L6470_SET_KVAL_HOLD(Z4);
#endif
break;
#endif
#if E_STEPPERS
case E_AXIS: {
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
switch (target_e_stepper) {
#if AXIS_IS_L64XX(E0)
case 0: L6470_SET_KVAL_HOLD(E0); break;
#endif
#if AXIS_IS_L64XX(E1)
case 1: L6470_SET_KVAL_HOLD(E1); break;
#endif
#if AXIS_IS_L64XX(E2)
case 2: L6470_SET_KVAL_HOLD(E2); break;
#endif
#if AXIS_IS_L64XX(E3)
case 3: L6470_SET_KVAL_HOLD(E3); break;
#endif
#if AXIS_IS_L64XX(E4)
case 4: L6470_SET_KVAL_HOLD(E4); break;
#endif
#if AXIS_IS_L64XX(E5)
case 5: L6470_SET_KVAL_HOLD(E5); break;
#endif
#if AXIS_IS_L64XX(E6)
case 6: L6470_SET_KVAL_HOLD(E6); break;
#endif
#if AXIS_IS_L64XX(E7)
case 7: L6470_SET_KVAL_HOLD(E7); break;
#endif
}
} break;
#endif
}
}
if (report_current) {
#define L64XX_REPORT_CURRENT(Q) L64XX_report_current(stepper##Q, Q)
L64xxManager.spi_active = true; // Tell set_directions() a series of SPI transfers is underway
#if AXIS_IS_L64XX(X)
L64XX_REPORT_CURRENT(X);
#endif
#if AXIS_IS_L64XX(X2)
L64XX_REPORT_CURRENT(X2);
#endif
#if AXIS_IS_L64XX(Y)
L64XX_REPORT_CURRENT(Y);
#endif
#if AXIS_IS_L64XX(Y2)
L64XX_REPORT_CURRENT(Y2);
#endif
#if AXIS_IS_L64XX(Z)
L64XX_REPORT_CURRENT(Z);
#endif
#if AXIS_IS_L64XX(Z2)
L64XX_REPORT_CURRENT(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
L64XX_REPORT_CURRENT(Z3);
#endif
#if AXIS_IS_L64XX(Z4)
L64XX_REPORT_CURRENT(Z4);
#endif
#if AXIS_IS_L64XX(E0)
L64XX_REPORT_CURRENT(E0);
#endif
#if AXIS_IS_L64XX(E1)
L64XX_REPORT_CURRENT(E1);
#endif
#if AXIS_IS_L64XX(E2)
L64XX_REPORT_CURRENT(E2);
#endif
#if AXIS_IS_L64XX(E3)
L64XX_REPORT_CURRENT(E3);
#endif
#if AXIS_IS_L64XX(E4)
L64XX_REPORT_CURRENT(E4);
#endif
#if AXIS_IS_L64XX(E5)
L64XX_REPORT_CURRENT(E5);
#endif
#if AXIS_IS_L64XX(E6)
L64XX_REPORT_CURRENT(E6);
#endif
#if AXIS_IS_L64XX(E7)
L64XX_REPORT_CURRENT(E7);
#endif
L64xxManager.spi_active = false; // done with all SPI transfers - clear handshake flags
L64xxManager.spi_abort = false;
L64xxManager.pause_monitor(false);
}
}
#endif // HAS_L64XX

View File

@@ -0,0 +1,651 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
//
// NOTE: All tests assume each axis uses matching driver chips.
//
#include "../../../inc/MarlinConfig.h"
#if HAS_L64XX
#include "../../gcode.h"
#include "../../../module/stepper/indirection.h"
#include "../../../module/planner.h"
#include "../../../libs/L64XX/L64XX_Marlin.h"
#define DEBUG_OUT ENABLED(L6470_CHITCHAT)
#include "../../../core/debug_out.h"
/**
* M916: increase KVAL_HOLD until get thermal warning
* NOTE - on L6474 it is TVAL that is used
*
* J - select which driver(s) to monitor on multi-driver axis
* 0 - (default) monitor all drivers on the axis or E0
* 1 - monitor only X, Y, Z, E1
* 2 - monitor only X2, Y2, Z2, E2
* 3 - monitor only Z3, E3
* 4 - monitor only Z4, E4
*
* Xxxx, Yxxx, Zxxx, Exxx - axis to be monitored with displacement
* xxx (1-255) is distance moved on either side of current position
*
* F - feedrate
* optional - will use default max feedrate from configuration.h if not specified
*
* T - current (mA) setting for TVAL (0 - 4A in 31.25mA increments, rounds down) - L6474 only
* optional - will report current value from driver if not specified
*
* K - value for KVAL_HOLD (0 - 255) (ignored for L6474)
* optional - will report current value from driver if not specified
*
* D - time (in seconds) to run each setting of KVAL_HOLD/TVAL
* optional - defaults to zero (runs each setting once)
*/
/**
* This routine is also useful for determining the approximate KVAL_HOLD
* where the stepper stops losing steps. The sound will get noticeably quieter
* as it stops losing steps.
*/
void GcodeSuite::M916() {
DEBUG_ECHOLNPGM("M916");
L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
// Variables used by L64xxManager.get_user_input function - some may not be used
char axis_mon[3][3] = { {" "}, {" "}, {" "} }; // list of Axes to be monitored
L64XX_axis_t axis_index[3];
uint16_t axis_status[3];
uint8_t driver_count = 1;
float position_max;
float position_min;
float final_feedrate;
uint8_t kval_hold;
uint8_t OCD_TH_val = 0;
uint8_t STALL_TH_val = 0;
uint16_t over_current_threshold;
constexpr uint8_t over_current_flag = false; // M916 doesn't play with the overcurrent thresholds
#define DRIVER_TYPE_L6474(Q) AXIS_DRIVER_TYPE_##Q(L6474)
uint8_t j; // general purpose counter
if (L64xxManager.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_feedrate, kval_hold, over_current_flag, OCD_TH_val, STALL_TH_val, over_current_threshold))
return; // quit if invalid user input
DEBUG_ECHOLNPAIR("feedrate = ", final_feedrate);
planner.synchronize(); // wait for all current movement commands to complete
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
for (j = 0; j < driver_count; j++)
L64xxManager.get_status(axis_index[j]); // clear out any pre-existing error flags
char temp_axis_string[] = " ";
temp_axis_string[0] = axis_mon[0][0]; // need to have a string for use within sprintf format section
char gcode_string[80];
uint16_t status_composite = 0;
uint16_t M91x_counter = kval_hold;
uint16_t M91x_counter_max;
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) {
M91x_counter_max = 128; // TVAL is 7 bits
LIMIT(M91x_counter, 0U, 127U);
}
else
M91x_counter_max = 256; // KVAL_HOLD is 8 bits
uint8_t M91x_delay_s = parser.byteval('D'); // get delay in seconds
millis_t M91x_delay_ms = SEC_TO_MS(M91x_delay_s * 60);
millis_t M91x_delay_end;
DEBUG_ECHOLNPGM(".\n.");
do {
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT)
DEBUG_ECHOLNPAIR("TVAL current (mA) = ", (M91x_counter + 1) * sh.AXIS_STALL_CURRENT_CONSTANT_INV); // report TVAL current for this run
else
DEBUG_ECHOLNPAIR("kval_hold = ", M91x_counter); // report KVAL_HOLD for this run
for (j = 0; j < driver_count; j++)
L64xxManager.set_param(axis_index[j], L6470_KVAL_HOLD, M91x_counter); //set KVAL_HOLD or TVAL (same register address)
M91x_delay_end = millis() + M91x_delay_ms;
do {
// turn the motor(s) both directions
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_min), uint16_t(final_feedrate));
gcode.process_subcommands_now_P(gcode_string);
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_max), uint16_t(final_feedrate));
gcode.process_subcommands_now_P(gcode_string);
// get the status after the motors have stopped
planner.synchronize();
status_composite = 0; // clear out the old bits
for (j = 0; j < driver_count; j++) {
axis_status[j] = (~L64xxManager.get_status(axis_index[j])) & sh.L6470_ERROR_MASK; // bits of interest are all active low
status_composite |= axis_status[j] ;
}
if (status_composite) break;
} while (millis() < M91x_delay_end);
if (status_composite) break;
M91x_counter++;
} while (!(status_composite & (sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD)) && (M91x_counter < M91x_counter_max));
DEBUG_ECHOLNPGM(".");
#if ENABLED(L6470_CHITCHAT)
if (status_composite) {
L64xxManager.error_status_decode(status_composite, axis_index[0],
sh.STATUS_AXIS_TH_SD, sh.STATUS_AXIS_TH_WRN,
sh.STATUS_AXIS_STEP_LOSS_A, sh.STATUS_AXIS_STEP_LOSS_B,
sh.STATUS_AXIS_OCD, sh.STATUS_AXIS_LAYOUT);
DEBUG_ECHOLNPGM(".");
}
#endif
if ((status_composite & (sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD)))
DEBUG_ECHOLNPGM(".\n.\nTest completed normally - Thermal warning/shutdown has occurred");
else if (status_composite)
DEBUG_ECHOLNPGM(".\n.\nTest completed abnormally - non-thermal error has occurred");
else
DEBUG_ECHOLNPGM(".\n.\nTest completed normally - Unable to get to thermal warning/shutdown");
L64xxManager.pause_monitor(false);
}
/**
* M917: Find minimum current thresholds
*
* Decrease OCD current until overcurrent error
* Increase OCD until overcurrent error goes away
* Decrease stall threshold until stall (not done on L6474)
* Increase stall until stall error goes away (not done on L6474)
*
* J - select which driver(s) to monitor on multi-driver axis
* 0 - (default) monitor all drivers on the axis or E0
* 1 - monitor only X, Y, Z, E1
* 2 - monitor only X2, Y2, Z2, E2
* Xxxx, Yxxx, Zxxx, Exxx - axis to be monitored with displacement
* xxx (1-255) is distance moved on either side of current position
*
* F - feedrate
* optional - will use default max feedrate from Configuration.h if not specified
*
* I - starting over-current threshold
* optional - will report current value from driver if not specified
* if there are multiple drivers on the axis then all will be set the same
*
* T - current (mA) setting for TVAL (0 - 4A in 31.25mA increments, rounds down) - L6474 only
* optional - will report current value from driver if not specified
*
* K - value for KVAL_HOLD (0 - 255) (ignored for L6474)
* optional - will report current value from driver if not specified
*/
void GcodeSuite::M917() {
DEBUG_ECHOLNPGM("M917");
L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
char axis_mon[3][3] = { {" "}, {" "}, {" "} }; // list of Axes to be monitored
L64XX_axis_t axis_index[3];
uint16_t axis_status[3];
uint8_t driver_count = 1;
float position_max;
float position_min;
float final_feedrate;
uint8_t kval_hold;
uint8_t OCD_TH_val = 0;
uint8_t STALL_TH_val = 0;
uint16_t over_current_threshold;
constexpr uint8_t over_current_flag = true;
uint8_t j; // general purpose counter
if (L64xxManager.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_feedrate, kval_hold, over_current_flag, OCD_TH_val, STALL_TH_val, over_current_threshold))
return; // quit if invalid user input
DEBUG_ECHOLNPAIR("feedrate = ", final_feedrate);
planner.synchronize(); // wait for all current movement commands to complete
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
for (j = 0; j < driver_count; j++)
L64xxManager.get_status(axis_index[j]); // clear error flags
char temp_axis_string[] = " ";
temp_axis_string[0] = axis_mon[0][0]; // need a sprintf format string
char gcode_string[80];
uint16_t status_composite = 0;
uint8_t test_phase = 0; // 0 - decreasing OCD - exit when OCD warning occurs (ignore STALL)
// 1 - increasing OCD - exit when OCD warning stops (ignore STALL)
// 2 - OCD finalized - decreasing STALL - exit when STALL warning happens
// 3 - OCD finalized - increasing STALL - exit when STALL warning stop
// 4 - all testing completed
DEBUG_ECHOPAIR(".\n.\n.\nover_current threshold : ", (OCD_TH_val + 1) * 375); // first status display
DEBUG_ECHOPAIR(" (OCD_TH: : ", OCD_TH_val);
if (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT) {
DEBUG_ECHOPAIR(") Stall threshold: ", (STALL_TH_val + 1) * 31.25);
DEBUG_ECHOPAIR(" (STALL_TH: ", STALL_TH_val);
}
DEBUG_ECHOLNPGM(")");
do {
if (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT) DEBUG_ECHOPAIR("STALL threshold : ", (STALL_TH_val + 1) * 31.25);
DEBUG_ECHOLNPAIR(" OCD threshold : ", (OCD_TH_val + 1) * 375);
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_min), uint16_t(final_feedrate));
gcode.process_subcommands_now_P(gcode_string);
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_max), uint16_t(final_feedrate));
gcode.process_subcommands_now_P(gcode_string);
planner.synchronize();
status_composite = 0; // clear out the old bits
for (j = 0; j < driver_count; j++) {
axis_status[j] = (~L64xxManager.get_status(axis_index[j])) & sh.L6470_ERROR_MASK; // bits of interest are all active low
status_composite |= axis_status[j];
}
if (status_composite && (status_composite & sh.STATUS_AXIS_UVLO)) {
DEBUG_ECHOLNPGM("Test aborted (Undervoltage lockout active)");
#if ENABLED(L6470_CHITCHAT)
for (j = 0; j < driver_count; j++) {
if (j) DEBUG_ECHOPGM("...");
L64xxManager.error_status_decode(axis_status[j], axis_index[j],
sh.STATUS_AXIS_TH_SD, sh.STATUS_AXIS_TH_WRN,
sh.STATUS_AXIS_STEP_LOSS_A, sh.STATUS_AXIS_STEP_LOSS_B,
sh.STATUS_AXIS_OCD, sh.STATUS_AXIS_LAYOUT);
}
#endif
return;
}
if (status_composite & (sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD)) {
DEBUG_ECHOLNPGM("thermal problem - waiting for chip(s) to cool down ");
uint16_t status_composite_temp = 0;
uint8_t k = 0;
do {
k++;
if (!(k % 4)) {
kval_hold *= 0.95;
DEBUG_EOL();
DEBUG_ECHOLNPAIR("Lowering KVAL_HOLD by about 5% to ", kval_hold);
for (j = 0; j < driver_count; j++)
L64xxManager.set_param(axis_index[j], L6470_KVAL_HOLD, kval_hold);
}
DEBUG_ECHOLNPGM(".");
gcode.reset_stepper_timeout(); // keep steppers powered
watchdog_refresh();
safe_delay(5000);
status_composite_temp = 0;
for (j = 0; j < driver_count; j++) {
axis_status[j] = (~L64xxManager.get_status(axis_index[j])) & sh.L6470_ERROR_MASK; // bits of interest are all active low
status_composite_temp |= axis_status[j];
}
}
while (status_composite_temp & (sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD));
DEBUG_EOL();
}
if (status_composite & (sh.STATUS_AXIS_STEP_LOSS_A | sh.STATUS_AXIS_STEP_LOSS_B | sh.STATUS_AXIS_OCD)) {
switch (test_phase) {
case 0: {
if (status_composite & sh.STATUS_AXIS_OCD) {
// phase 0 with OCD warning - time to go to next phase
if (OCD_TH_val >= sh.AXIS_OCD_TH_MAX) {
OCD_TH_val = sh.AXIS_OCD_TH_MAX; // limit to max
test_phase = 2; // at highest value so skip phase 1
//DEBUG_ECHOLNPGM("LOGIC E0A OCD at highest - skip to 2");
DEBUG_ECHOLNPGM("OCD at highest - OCD finalized");
}
else {
OCD_TH_val++; // normal exit to next phase
test_phase = 1; // setup for first pass of phase 1
//DEBUG_ECHOLNPGM("LOGIC E0B - inc OCD & go to 1");
DEBUG_ECHOLNPGM("inc OCD");
}
}
else { // phase 0 without OCD warning - keep on decrementing if can
if (OCD_TH_val) {
OCD_TH_val--; // try lower value
//DEBUG_ECHOLNPGM("LOGIC E0C - dec OCD");
DEBUG_ECHOLNPGM("dec OCD");
}
else {
test_phase = 2; // at lowest value without warning so skip phase 1
//DEBUG_ECHOLNPGM("LOGIC E0D - OCD at latest - go to 2");
DEBUG_ECHOLNPGM("OCD finalized");
}
}
} break;
case 1: {
if (status_composite & sh.STATUS_AXIS_OCD) {
// phase 1 with OCD warning - increment if can
if (OCD_TH_val >= sh.AXIS_OCD_TH_MAX) {
OCD_TH_val = sh.AXIS_OCD_TH_MAX; // limit to max
test_phase = 2; // at highest value so go to next phase
//DEBUG_ECHOLNPGM("LOGIC E1A - OCD at max - go to 2");
DEBUG_ECHOLNPGM("OCD finalized");
}
else {
OCD_TH_val++; // try a higher value
//DEBUG_ECHOLNPGM("LOGIC E1B - inc OCD");
DEBUG_ECHOLNPGM("inc OCD");
}
}
else { // phase 1 without OCD warning - normal exit to phase 2
test_phase = 2;
//DEBUG_ECHOLNPGM("LOGIC E1C - no OCD warning - go to 1");
DEBUG_ECHOLNPGM("OCD finalized");
}
} break;
case 2: {
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // skip all STALL_TH steps if L6474
test_phase = 4;
break;
}
if (status_composite & (sh.STATUS_AXIS_STEP_LOSS_A | sh.STATUS_AXIS_STEP_LOSS_B)) {
// phase 2 with stall warning - time to go to next phase
if (STALL_TH_val >= 127) {
STALL_TH_val = 127; // limit to max
//DEBUG_ECHOLNPGM("LOGIC E2A - STALL warning, STALL at max, quit");
DEBUG_ECHOLNPGM("finished - STALL at maximum value but still have stall warning");
test_phase = 4;
}
else {
test_phase = 3; // normal exit to next phase (found failing value of STALL)
STALL_TH_val++; // setup for first pass of phase 3
//DEBUG_ECHOLNPGM("LOGIC E2B - INC - STALL warning, inc Stall, go to 3");
DEBUG_ECHOLNPGM("inc Stall");
}
}
else { // phase 2 without stall warning - decrement if can
if (STALL_TH_val) {
STALL_TH_val--; // try a lower value
//DEBUG_ECHOLNPGM("LOGIC E2C - no STALL, dec STALL");
DEBUG_ECHOLNPGM("dec STALL");
}
else {
DEBUG_ECHOLNPGM("finished - STALL at lowest value but still do NOT have stall warning");
test_phase = 4;
//DEBUG_ECHOLNPGM("LOGIC E2D - no STALL, at lowest so quit");
}
}
} break;
case 3: {
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // skip all STALL_TH steps if L6474
test_phase = 4;
break;
}
if (status_composite & (sh.STATUS_AXIS_STEP_LOSS_A | sh.STATUS_AXIS_STEP_LOSS_B)) {
// phase 3 with stall warning - increment if can
if (STALL_TH_val >= 127) {
STALL_TH_val = 127; // limit to max
DEBUG_ECHOLNPGM("finished - STALL at maximum value but still have stall warning");
test_phase = 4;
//DEBUG_ECHOLNPGM("LOGIC E3A - STALL, at max so quit");
}
else {
STALL_TH_val++; // still looking for passing value
//DEBUG_ECHOLNPGM("LOGIC E3B - STALL, inc stall");
DEBUG_ECHOLNPGM("inc stall");
}
}
else { //phase 3 without stall warning but have OCD warning
DEBUG_ECHOLNPGM("Hardware problem - OCD warning without STALL warning");
test_phase = 4;
//DEBUG_ECHOLNPGM("LOGIC E3C - not STALLED, hardware problem (quit)");
}
} break;
}
}
else {
switch (test_phase) {
case 0: { // phase 0 without OCD warning - keep on decrementing if can
if (OCD_TH_val) {
OCD_TH_val--; // try lower value
//DEBUG_ECHOLNPGM("LOGIC N0A - DEC OCD");
DEBUG_ECHOLNPGM("DEC OCD");
}
else {
test_phase = 2; // at lowest value without warning so skip phase 1
//DEBUG_ECHOLNPGM("LOGIC N0B - OCD at lowest (go to phase 2)");
DEBUG_ECHOLNPGM("OCD finalized");
}
} break;
case 1: //DEBUG_ECHOLNPGM("LOGIC N1 (go directly to 2)"); // phase 1 without OCD warning - drop directly to phase 2
DEBUG_ECHOLNPGM("OCD finalized");
case 2: { // phase 2 without stall warning - keep on decrementing if can
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // skip all STALL_TH steps if L6474
test_phase = 4;
break;
}
if (STALL_TH_val) {
STALL_TH_val--; // try a lower value (stay in phase 2)
//DEBUG_ECHOLNPGM("LOGIC N2B - dec STALL");
DEBUG_ECHOLNPGM("dec STALL");
}
else {
DEBUG_ECHOLNPGM("finished - STALL at lowest value but still no stall warning");
test_phase = 4;
//DEBUG_ECHOLNPGM("LOGIC N2C - STALL at lowest (quit)");
}
} break;
case 3: {
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // skip all STALL_TH steps if L6474
test_phase = 4;
break;
}
test_phase = 4;
//DEBUG_ECHOLNPGM("LOGIC N3 - finished!");
DEBUG_ECHOLNPGM("finished!");
} break; // phase 3 without any warnings - desired exit
} //
} // end of status checks
if (test_phase != 4) {
for (j = 0; j < driver_count; j++) { // update threshold(s)
L64xxManager.set_param(axis_index[j], L6470_OCD_TH, OCD_TH_val);
if (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT) L64xxManager.set_param(axis_index[j], L6470_STALL_TH, STALL_TH_val);
if (L64xxManager.get_param(axis_index[j], L6470_OCD_TH) != OCD_TH_val) DEBUG_ECHOLNPGM("OCD mismatch");
if ((L64xxManager.get_param(axis_index[j], L6470_STALL_TH) != STALL_TH_val) && (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT)) DEBUG_ECHOLNPGM("STALL mismatch");
}
}
} while (test_phase != 4);
DEBUG_ECHOLNPGM(".");
if (status_composite) {
#if ENABLED(L6470_CHITCHAT)
for (j = 0; j < driver_count; j++) {
if (j) DEBUG_ECHOPGM("...");
L64xxManager.error_status_decode(axis_status[j], axis_index[j],
sh.STATUS_AXIS_TH_SD, sh.STATUS_AXIS_TH_WRN,
sh.STATUS_AXIS_STEP_LOSS_A, sh.STATUS_AXIS_STEP_LOSS_B,
sh.STATUS_AXIS_OCD, sh.STATUS_AXIS_LAYOUT);
}
DEBUG_ECHOLNPGM(".");
#endif
DEBUG_ECHOLNPGM("Completed with errors");
}
else
DEBUG_ECHOLNPGM("Completed with no errors");
DEBUG_ECHOLNPGM(".");
L64xxManager.pause_monitor(false);
}
/**
* M918: increase speed until error or max feedrate achieved (as shown in configuration.h))
*
* J - select which driver(s) to monitor on multi-driver axis
* 0 - (default) monitor all drivers on the axis or E0
* 1 - monitor only X, Y, Z, E1
* 2 - monitor only X2, Y2, Z2, E2
* Xxxx, Yxxx, Zxxx, Exxx - axis to be monitored with displacement
* xxx (1-255) is distance moved on either side of current position
*
* I - over current threshold
* optional - will report current value from driver if not specified
*
* T - current (mA) setting for TVAL (0 - 4A in 31.25mA increments, rounds down) - L6474 only
* optional - will report current value from driver if not specified
*
* K - value for KVAL_HOLD (0 - 255) (ignored for L6474)
* optional - will report current value from driver if not specified
*
* M - value for microsteps (1 - 128) (optional)
* optional - will report current value from driver if not specified
*/
void GcodeSuite::M918() {
DEBUG_ECHOLNPGM("M918");
L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
char axis_mon[3][3] = { {" "}, {" "}, {" "} }; // list of Axes to be monitored
L64XX_axis_t axis_index[3];
uint16_t axis_status[3];
uint8_t driver_count = 1;
float position_max, position_min;
float final_feedrate;
uint8_t kval_hold;
uint8_t OCD_TH_val = 0;
uint8_t STALL_TH_val = 0;
uint16_t over_current_threshold;
constexpr uint8_t over_current_flag = true;
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
uint8_t j; // general purpose counter
if (L64xxManager.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_feedrate, kval_hold, over_current_flag, OCD_TH_val, STALL_TH_val, over_current_threshold))
return; // quit if invalid user input
L64xxManager.get_status(axis_index[0]); // populate shadow array
uint8_t m_steps = parser.byteval('M');
if (m_steps != 0) {
LIMIT(m_steps, 1, sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT ? 16 : 128); // L6474
uint8_t stepVal;
for (stepVal = 0; stepVal < 8; stepVal++) { // convert to L64xx register value
if (m_steps == 1) break;
m_steps >>= 1;
}
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT)
stepVal |= 0x98; // NO SYNC
else
stepVal |= (!SYNC_EN) | SYNC_SEL_1 | stepVal;
for (j = 0; j < driver_count; j++) {
L64xxManager.set_param(axis_index[j], dSPIN_HARD_HIZ, 0); // can't write STEP register if stepper being powered
// results in an extra NOOP being sent (data 00)
L64xxManager.set_param(axis_index[j], L6470_STEP_MODE, stepVal); // set microsteps
}
}
m_steps = L64xxManager.get_param(axis_index[0], L6470_STEP_MODE) & 0x07; // get microsteps
DEBUG_ECHOLNPAIR("Microsteps = ", _BV(m_steps));
DEBUG_ECHOLNPAIR("target (maximum) feedrate = ", final_feedrate);
const float feedrate_inc = final_feedrate / 10, // Start at 1/10 of max & go up by 1/10 per step
fr_limit = final_feedrate * 0.99f; // Rounding-safe comparison value
float current_feedrate = 0;
planner.synchronize(); // Wait for moves to complete
for (j = 0; j < driver_count; j++)
L64xxManager.get_status(axis_index[j]); // Clear error flags
char temp_axis_string[2] = " ";
temp_axis_string[0] = axis_mon[0][0]; // Need a sprintf format string
//temp_axis_string[1] = '\n';
char gcode_string[80];
uint16_t status_composite = 0;
DEBUG_ECHOLNPGM(".\n.\n."); // Make feedrate outputs easier to read
do {
current_feedrate += feedrate_inc;
DEBUG_ECHOLNPAIR("...feedrate = ", current_feedrate);
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_min), uint16_t(current_feedrate));
gcode.process_subcommands_now_P(gcode_string);
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_max), uint16_t(current_feedrate));
gcode.process_subcommands_now_P(gcode_string);
planner.synchronize();
for (j = 0; j < driver_count; j++) {
axis_status[j] = (~L64xxManager.get_status(axis_index[j])) & 0x0800; // Bits of interest are all active LOW
status_composite |= axis_status[j];
}
if (status_composite) break; // Break on any error
} while (current_feedrate < fr_limit);
DEBUG_ECHOPGM("Completed with ");
if (status_composite) {
DEBUG_ECHOLNPGM("errors");
#if ENABLED(L6470_CHITCHAT)
for (j = 0; j < driver_count; j++) {
if (j) DEBUG_ECHOPGM("...");
L64xxManager.error_status_decode(axis_status[j], axis_index[j],
sh.STATUS_AXIS_TH_SD, sh.STATUS_AXIS_TH_WRN,
sh.STATUS_AXIS_STEP_LOSS_A, sh.STATUS_AXIS_STEP_LOSS_B,
sh.STATUS_AXIS_OCD, sh.STATUS_AXIS_LAYOUT);
}
#endif
}
else
DEBUG_ECHOLNPGM("no errors");
L64xxManager.pause_monitor(false);
}
#endif // HAS_L64XX

View File

@@ -0,0 +1,147 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(LIN_ADVANCE)
#include "../../gcode.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#if ENABLED(EXTRA_LIN_ADVANCE_K)
float other_extruder_advance_K[EXTRUDERS];
uint8_t lin_adv_slot = 0;
#endif
/**
* M900: Get or Set Linear Advance K-factor
* T<tool> Which tool to address
* K<factor> Set current advance K factor (Slot 0).
* L<factor> Set secondary advance K factor (Slot 1). Requires EXTRA_LIN_ADVANCE_K.
* S<0/1> Activate slot 0 or 1. Requires EXTRA_LIN_ADVANCE_K.
*/
void GcodeSuite::M900() {
auto echo_value_oor = [](const char ltr, const bool ten=true) {
SERIAL_CHAR('?', ltr);
SERIAL_ECHOPGM(" value out of range");
if (ten) SERIAL_ECHOPGM(" (0-10)");
SERIAL_ECHOLNPGM(".");
};
#if EXTRUDERS < 2
constexpr uint8_t tool_index = 0;
#else
const uint8_t tool_index = parser.intval('T', active_extruder);
if (tool_index >= EXTRUDERS) {
echo_value_oor('T', false);
return;
}
#endif
float &kref = planner.extruder_advance_K[tool_index], newK = kref;
const float oldK = newK;
#if ENABLED(EXTRA_LIN_ADVANCE_K)
float &lref = other_extruder_advance_K[tool_index];
const bool old_slot = TEST(lin_adv_slot, tool_index), // The tool's current slot (0 or 1)
new_slot = parser.boolval('S', old_slot); // The passed slot (default = current)
// If a new slot is being selected swap the current and
// saved K values. Do here so K/L will apply correctly.
if (new_slot != old_slot) { // Not the same slot?
SET_BIT_TO(lin_adv_slot, tool_index, new_slot); // Update the slot for the tool
newK = lref; // Get new K value from backup
lref = oldK; // Save K to backup
}
// Set the main K value. Apply if the main slot is active.
if (parser.seenval('K')) {
const float K = parser.value_float();
if (!WITHIN(K, 0, 10)) echo_value_oor('K');
else if (new_slot) lref = K; // S1 Knn
else newK = K; // S0 Knn
}
// Set the extra K value. Apply if the extra slot is active.
if (parser.seenval('L')) {
const float L = parser.value_float();
if (!WITHIN(L, 0, 10)) echo_value_oor('L');
else if (!new_slot) lref = L; // S0 Lnn
else newK = L; // S1 Lnn
}
#else
if (parser.seenval('K')) {
const float K = parser.value_float();
if (WITHIN(K, 0, 10))
newK = K;
else
echo_value_oor('K');
}
#endif
if (newK != oldK) {
planner.synchronize();
kref = newK;
}
if (!parser.seen_any()) {
#if ENABLED(EXTRA_LIN_ADVANCE_K)
#if EXTRUDERS < 2
SERIAL_ECHOLNPAIR("Advance S", new_slot, " K", kref, "(S", !new_slot, " K", lref, ")");
#else
LOOP_L_N(i, EXTRUDERS) {
const bool slot = TEST(lin_adv_slot, i);
SERIAL_ECHOLNPAIR("Advance T", i, " S", slot, " K", planner.extruder_advance_K[i],
"(S", !slot, " K", other_extruder_advance_K[i], ")");
SERIAL_EOL();
}
#endif
#else
SERIAL_ECHO_START();
#if EXTRUDERS < 2
SERIAL_ECHOLNPAIR("Advance K=", planner.extruder_advance_K[0]);
#else
SERIAL_ECHOPGM("Advance K");
LOOP_L_N(i, EXTRUDERS) {
SERIAL_CHAR(' ', '0' + i, ':');
SERIAL_DECIMAL(planner.extruder_advance_K[i]);
}
SERIAL_EOL();
#endif
#endif
}
}
#endif // LIN_ADVANCE

View File

@@ -0,0 +1,58 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(BARICUDA)
#include "../../gcode.h"
#include "../../../feature/baricuda.h"
#if HAS_HEATER_1
/**
* M126: Heater 1 valve open
*/
void GcodeSuite::M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
/**
* M127: Heater 1 valve close
*/
void GcodeSuite::M127() { baricuda_valve_pressure = 0; }
#endif // HAS_HEATER_1
#if HAS_HEATER_2
/**
* M128: Heater 2 valve open
*/
void GcodeSuite::M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
/**
* M129: Heater 2 valve close
*/
void GcodeSuite::M129() { baricuda_e_to_p_pressure = 0; }
#endif // HAS_HEATER_2
#endif // BARICUDA

View File

@@ -0,0 +1,204 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(PHOTO_GCODE)
#include "../../gcode.h"
#include "../../../module/motion.h" // for active_extruder and current_position
#if PIN_EXISTS(CHDK)
millis_t chdk_timeout; // = 0
#endif
#if defined(PHOTO_POSITION) && PHOTO_DELAY_MS > 0
#include "../../../MarlinCore.h" // for idle()
#endif
#ifdef PHOTO_RETRACT_MM
#define _PHOTO_RETRACT_MM (PHOTO_RETRACT_MM + 0)
#include "../../../module/planner.h"
#include "../../../module/temperature.h"
#if ENABLED(ADVANCED_PAUSE_FEATURE)
#include "../../../feature/pause.h"
#endif
#ifdef PHOTO_RETRACT_MM
inline void e_move_m240(const float length, const_feedRate_t fr_mm_s) {
if (length && thermalManager.hotEnoughToExtrude(active_extruder))
unscaled_e_move(length, fr_mm_s);
}
#endif
#endif
#if PIN_EXISTS(PHOTOGRAPH)
FORCE_INLINE void set_photo_pin(const uint8_t state) {
constexpr uint32_t pulse_length = (
#ifdef PHOTO_PULSES_US
PHOTO_PULSE_DELAY_US
#else
15 // 15.24 from _delay_ms(0.01524)
#endif
);
WRITE(PHOTOGRAPH_PIN, state);
delayMicroseconds(pulse_length);
}
FORCE_INLINE void tweak_photo_pin() { set_photo_pin(HIGH); set_photo_pin(LOW); }
#ifdef PHOTO_PULSES_US
inline void pulse_photo_pin(const uint32_t duration, const uint8_t state) {
if (state) {
for (const uint32_t stop = micros() + duration; micros() < stop;)
tweak_photo_pin();
}
else
delayMicroseconds(duration);
}
inline void spin_photo_pin() {
static constexpr uint32_t sequence[] = PHOTO_PULSES_US;
LOOP_L_N(i, COUNT(sequence))
pulse_photo_pin(sequence[i], !(i & 1));
}
#else
constexpr uint8_t NUM_PULSES = 16;
inline void spin_photo_pin() { for (uint8_t i = NUM_PULSES; i--;) tweak_photo_pin(); }
#endif
#endif
/**
* M240: Trigger a camera by...
*
* - CHDK : Emulate a Canon RC-1 with a configurable ON duration.
* https://captain-slow.dk/2014/03/09/3d-printing-timelapses/
* - PHOTOGRAPH_PIN : Pulse a digital pin 16 times.
* See https://www.doc-diy.net/photo/rc-1_hacked/
* - PHOTO_SWITCH_POSITION : Bump a physical switch with the X-carriage using a
* configured position, delay, and retract length.
*
* PHOTO_POSITION parameters:
* A - X offset to the return position
* B - Y offset to the return position
* F - Override the XY movement feedrate
* R - Retract/recover length (current units)
* S - Retract/recover feedrate (mm/m)
* X - Move to X before triggering the shutter
* Y - Move to Y before triggering the shutter
* Z - Raise Z by a distance before triggering the shutter
*
* PHOTO_SWITCH_POSITION parameters:
* D - Duration (ms) to hold down switch (Requires PHOTO_SWITCH_MS)
* P - Delay (ms) after triggering the shutter (Requires PHOTO_SWITCH_MS)
* I - Switch trigger position override X
* J - Switch trigger position override Y
*/
void GcodeSuite::M240() {
#ifdef PHOTO_POSITION
if (homing_needed_error()) return;
const xyz_pos_t old_pos = {
current_position.x + parser.linearval('A'),
current_position.y + parser.linearval('B'),
current_position.z
};
#ifdef PHOTO_RETRACT_MM
const float rval = parser.seenval('R') ? parser.value_linear_units() : _PHOTO_RETRACT_MM;
feedRate_t sval = (
#if ENABLED(ADVANCED_PAUSE_FEATURE)
PAUSE_PARK_RETRACT_FEEDRATE
#elif ENABLED(FWRETRACT)
RETRACT_FEEDRATE
#else
45
#endif
);
if (parser.seenval('S')) sval = parser.value_feedrate();
e_move_m240(-rval, sval);
#endif
feedRate_t fr_mm_s = MMM_TO_MMS(parser.linearval('F'));
if (fr_mm_s) NOLESS(fr_mm_s, 10.0f);
constexpr xyz_pos_t photo_position = PHOTO_POSITION;
xyz_pos_t raw = {
parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : photo_position.x,
parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : photo_position.y,
(parser.seenval('Z') ? parser.value_linear_units() : photo_position.z) + current_position.z
};
apply_motion_limits(raw);
do_blocking_move_to(raw, fr_mm_s);
#ifdef PHOTO_SWITCH_POSITION
constexpr xy_pos_t photo_switch_position = PHOTO_SWITCH_POSITION;
const xy_pos_t sraw = {
parser.seenval('I') ? RAW_X_POSITION(parser.value_linear_units()) : photo_switch_position.x,
parser.seenval('J') ? RAW_Y_POSITION(parser.value_linear_units()) : photo_switch_position.y
};
do_blocking_move_to_xy(sraw, get_homing_bump_feedrate(X_AXIS));
#if PHOTO_SWITCH_MS > 0
safe_delay(parser.intval('D', PHOTO_SWITCH_MS));
#endif
do_blocking_move_to(raw);
#endif
#endif
#if PIN_EXISTS(CHDK)
OUT_WRITE(CHDK_PIN, HIGH);
chdk_timeout = millis() + parser.intval('D', PHOTO_SWITCH_MS);
#elif HAS_PHOTOGRAPH
spin_photo_pin();
delay(7.33);
spin_photo_pin();
#endif
#ifdef PHOTO_POSITION
#if PHOTO_DELAY_MS > 0
const millis_t timeout = millis() + parser.intval('P', PHOTO_DELAY_MS);
while (PENDING(millis(), timeout)) idle();
#endif
do_blocking_move_to(old_pos, fr_mm_s);
#ifdef PHOTO_RETRACT_MM
e_move_m240(rval, sval);
#endif
#endif
}
#endif // PHOTO_GCODE

View File

@@ -0,0 +1,57 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(CANCEL_OBJECTS)
#include "../../gcode.h"
#include "../../../feature/cancel_object.h"
/**
* M486: A simple interface to cancel objects
*
* T[count] : Reset objects and/or set the count
* S<index> : Start an object with the given index
* P<index> : Cancel the object with the given index
* U<index> : Un-cancel object with the given index
* C : Cancel the current object (the last index given by S<index>)
* S-1 : Start a non-object like a brim or purge tower that should always print
*/
void GcodeSuite::M486() {
if (parser.seen('T')) {
cancelable.reset();
cancelable.object_count = parser.intval('T', 1);
}
if (parser.seen('S'))
cancelable.set_active_object(parser.value_int());
if (parser.seen('C')) cancelable.cancel_active_object();
if (parser.seen('P')) cancelable.cancel_object(parser.value_int());
if (parser.seen('U')) cancelable.uncancel_object(parser.value_int());
}
#endif // CANCEL_OBJECTS

View File

@@ -0,0 +1,73 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(CASE_LIGHT_ENABLE)
#include "../../../feature/caselight.h"
#include "../../gcode.h"
/**
* M355: Turn case light on/off and set brightness
*
* P<byte> Set case light brightness (PWM pin required - ignored otherwise)
*
* S<bool> Set case light on/off
*
* When S turns on the light on a PWM pin then the current brightness level is used/restored
*
* M355 P200 S0 turns off the light & sets the brightness level
* M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
*/
void GcodeSuite::M355() {
bool didset = false;
#if CASELIGHT_USES_BRIGHTNESS
if (parser.seenval('P')) {
didset = true;
caselight.brightness = parser.value_byte();
}
#endif
const bool sflag = parser.seenval('S');
if (sflag) {
didset = true;
caselight.on = parser.value_bool();
}
if (didset) caselight.update(sflag);
// Always report case light status
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Case light: ");
if (!caselight.on)
SERIAL_ECHOLNPGM(STR_OFF);
else {
#if CASELIGHT_USES_BRIGHTNESS
if (TERN(CASE_LIGHT_USE_NEOPIXEL, true, TERN0(NEED_CASE_LIGHT_PIN, PWM_PIN(CASE_LIGHT_PIN)))) {
SERIAL_ECHOLN(int(caselight.brightness));
return;
}
#endif
SERIAL_ECHOLNPGM(STR_ON);
}
}
#endif // CASE_LIGHT_ENABLE

View File

@@ -0,0 +1,81 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(NOZZLE_CLEAN_FEATURE)
#include "../../../libs/nozzle.h"
#include "../../gcode.h"
#include "../../parser.h"
#include "../../../module/motion.h"
#if HAS_LEVELING
#include "../../../module/planner.h"
#include "../../../feature/bedlevel/bedlevel.h"
#endif
/**
* G12: Clean the nozzle
*
* E<bool> : 0=Never or 1=Always apply the "software endstop" limits
* P0 S<strokes> : Stroke cleaning with S strokes
* P1 Sn T<objects> : Zigzag cleaning with S repeats and T zigzags
* P2 Sn R<radius> : Circle cleaning with S repeats and R radius
* X, Y, Z : Specify axes to move during cleaning. Default: ALL.
*/
void GcodeSuite::G12() {
// Don't allow nozzle cleaning without homing first
if (homing_needed_error()) return;
#ifdef WIPE_SEQUENCE_COMMANDS
if (!parser.seen_any()) {
gcode.process_subcommands_now_P(PSTR(WIPE_SEQUENCE_COMMANDS));
return;
}
#endif
const uint8_t pattern = parser.ushortval('P', 0),
strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
const float radius = parser.linearval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
const bool seenxyz = parser.seen("XYZ");
const uint8_t cleans = (!seenxyz || parser.boolval('X') ? _BV(X_AXIS) : 0)
| (!seenxyz || parser.boolval('Y') ? _BV(Y_AXIS) : 0)
| TERN(NOZZLE_CLEAN_NO_Z, 0, (!seenxyz || parser.boolval('Z') ? _BV(Z_AXIS) : 0))
;
#if HAS_LEVELING
// Disable bed leveling if cleaning Z
TEMPORARY_BED_LEVELING_STATE(!TEST(cleans, Z_AXIS) && planner.leveling_active);
#endif
SET_SOFT_ENDSTOP_LOOSE(!parser.boolval('E'));
nozzle.clean(pattern, strokes, radius, objects, cleans);
SET_SOFT_ENDSTOP_LOOSE(false);
}
#endif // NOZZLE_CLEAN_FEATURE

View File

@@ -0,0 +1,81 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if ENABLED(CONTROLLER_FAN_EDITABLE)
#include "../../gcode.h"
#include "../../../feature/controllerfan.h"
void M710_report(const bool forReplay=true) {
if (!forReplay) { SERIAL_ECHOLNPGM("; Controller Fan"); SERIAL_ECHO_START(); }
SERIAL_ECHOLNPAIR(" M710"
" S", int(controllerFan.settings.active_speed),
" I", int(controllerFan.settings.idle_speed),
" A", int(controllerFan.settings.auto_mode),
" D", controllerFan.settings.duration,
" ; (", (int(controllerFan.settings.active_speed) * 100) / 255, "%"
" ", (int(controllerFan.settings.idle_speed) * 100) / 255, "%)"
);
}
/**
* M710: Set controller fan settings
*
* R : Reset to defaults
* S[0-255] : Fan speed when motors are active
* I[0-255] : Fan speed when motors are idle
* A[0|1] : Turn auto mode on or off
* D : Set auto mode idle duration
*
* Examples:
* M710 ; Report current Settings
* M710 R ; Reset SIAD to defaults
* M710 I64 ; Set controller fan Idle Speed to 25%
* M710 S255 ; Set controller fan Active Speed to 100%
* M710 S0 ; Set controller fan Active Speed to OFF
* M710 I255 A0 ; Set controller fan Idle Speed to 100% with Auto Mode OFF
* M710 I127 A1 S255 D160 ; Set controller fan idle speed 50%, AutoMode On, Fan speed 100%, duration to 160 Secs
*/
void GcodeSuite::M710() {
const bool seenR = parser.seen('R');
if (seenR) controllerFan.reset();
const bool seenS = parser.seenval('S');
if (seenS) controllerFan.settings.active_speed = parser.value_byte();
const bool seenI = parser.seenval('I');
if (seenI) controllerFan.settings.idle_speed = parser.value_byte();
const bool seenA = parser.seenval('A');
if (seenA) controllerFan.settings.auto_mode = parser.value_bool();
const bool seenD = parser.seenval('D');
if (seenD) controllerFan.settings.duration = parser.value_ushort();
if (!(seenR || seenS || seenI || seenA || seenD))
M710_report();
}
#endif // CONTROLLER_FAN_EDITABLE

View File

@@ -0,0 +1,104 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ANY(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM, HAS_MOTOR_CURRENT_I2C, HAS_MOTOR_CURRENT_DAC)
#include "../../gcode.h"
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
#include "../../../module/stepper.h"
#endif
#if HAS_MOTOR_CURRENT_I2C
#include "../../../feature/digipot/digipot.h"
#endif
#if HAS_MOTOR_CURRENT_DAC
#include "../../../feature/dac/stepper_dac.h"
#endif
/**
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/
void GcodeSuite::M907() {
#if HAS_MOTOR_CURRENT_SPI
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.set_digipot_current(i, parser.value_int());
if (parser.seenval('B')) stepper.set_digipot_current(4, parser.value_int());
if (parser.seenval('S')) LOOP_LE_N(i, 4) stepper.set_digipot_current(i, parser.value_int());
#elif HAS_MOTOR_CURRENT_PWM
#if ANY_PIN(MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y, MOTOR_CURRENT_PWM_XY)
if (parser.seenval('X') || parser.seenval('Y')) stepper.set_digipot_current(0, parser.value_int());
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
if (parser.seenval('Z')) stepper.set_digipot_current(1, parser.value_int());
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
if (parser.seenval('E')) stepper.set_digipot_current(2, parser.value_int());
#endif
#endif
#if HAS_MOTOR_CURRENT_I2C
// this one uses actual amps in floating point
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) digipot_i2c.set_current(i, parser.value_float());
// Additional extruders use B,C,D for channels 4,5,6.
// TODO: Change these parameters because 'E' is used. B<index>?
#if HAS_EXTRUDERS
for (uint8_t i = E_AXIS + 1; i < DIGIPOT_I2C_NUM_CHANNELS; i++)
if (parser.seenval('B' + i - (E_AXIS + 1))) digipot_i2c.set_current(i, parser.value_float());
#endif
#endif
#if HAS_MOTOR_CURRENT_DAC
if (parser.seenval('S')) {
const float dac_percent = parser.value_float();
LOOP_LE_N(i, 4) stepper_dac.set_current_percent(i, dac_percent);
}
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper_dac.set_current_percent(i, parser.value_float());
#endif
}
#if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_DAC)
/**
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
*/
void GcodeSuite::M908() {
TERN_(HAS_MOTOR_CURRENT_SPI, stepper.set_digipot_value_spi(parser.intval('P'), parser.intval('S')));
TERN_(HAS_MOTOR_CURRENT_DAC, stepper_dac.set_current_value(parser.byteval('P', -1), parser.ushortval('S', 0)));
}
#if HAS_MOTOR_CURRENT_DAC
void GcodeSuite::M909() { stepper_dac.print_values(); }
void GcodeSuite::M910() { stepper_dac.commit_eeprom(); }
#endif // HAS_MOTOR_CURRENT_DAC
#endif // HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_DAC
#endif // HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM || HAS_MOTOR_CURRENT_I2C || HAS_MOTOR_CURRENT_DAC

View File

@@ -0,0 +1,71 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#include "../../../feature/filwidth.h"
#include "../../../module/planner.h"
#include "../../../MarlinCore.h"
#include "../../gcode.h"
/**
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
*/
void GcodeSuite::M404() {
if (parser.seenval('W')) {
filwidth.nominal_mm = parser.value_linear_units();
planner.volumetric_area_nominal = CIRCLE_AREA(filwidth.nominal_mm * 0.5);
}
else
SERIAL_ECHOLNPAIR("Filament dia (nominal mm):", filwidth.nominal_mm);
}
/**
* M405: Turn on filament sensor for control
*/
void GcodeSuite::M405() {
// This is technically a linear measurement, but since it's quantized to centimeters and is a different
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
if (parser.seenval('D'))
filwidth.set_delay_cm(parser.value_byte());
filwidth.enable(true);
}
/**
* M406: Turn off filament sensor for control
*/
void GcodeSuite::M406() {
filwidth.enable(false);
planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
}
/**
* M407: Get measured filament diameter on serial output
*/
void GcodeSuite::M407() {
SERIAL_ECHOLNPAIR("Filament dia (measured mm):", filwidth.measured_mm);
}
#endif // FILAMENT_WIDTH_SENSOR

View File

@@ -0,0 +1,51 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(FWRETRACT)
#include "../../../feature/fwretract.h"
#include "../../gcode.h"
#include "../../../module/motion.h"
/**
* G10 - Retract filament according to settings of M207
* TODO: Handle 'G10 P' for tool settings and 'G10 L' for workspace settings
*/
void GcodeSuite::G10() {
#if HAS_MULTI_EXTRUDER
const bool rs = parser.boolval('S');
#endif
fwretract.retract(true
#if HAS_MULTI_EXTRUDER
, rs
#endif
);
}
/**
* G11 - Recover filament according to settings of M208
*/
void GcodeSuite::G11() { fwretract.retract(false); }
#endif // FWRETRACT

View File

@@ -0,0 +1,52 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(FWRETRACT)
#include "../../../feature/fwretract.h"
#include "../../gcode.h"
/**
* M207: Set firmware retraction values
*/
void GcodeSuite::M207() { fwretract.M207(); }
/**
* M208: Set firmware un-retraction values
*/
void GcodeSuite::M208() { fwretract.M208(); }
#if ENABLED(FWRETRACT_AUTORETRACT)
/**
* M209: Enable automatic retract (M209 S1)
*
* For slicers that don't support G10/11, reversed
* extruder-only moves can be classified as retraction.
*/
void GcodeSuite::M209() { fwretract.M209(); }
#endif
#endif // FWRETRACT

View File

@@ -0,0 +1,76 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(EXPERIMENTAL_I2CBUS)
#include "../../gcode.h"
#include "../../../feature/twibus.h"
/**
* M260: Send data to a I2C slave device
*
* This is a PoC, the formatting and arguments for the GCODE will
* change to be more compatible, the current proposal is:
*
* M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
*
* M260 B<byte-1 value in base 10>
* M260 B<byte-2 value in base 10>
* M260 B<byte-3 value in base 10>
*
* M260 S1 ; Send the buffered data and reset the buffer
* M260 R1 ; Reset the buffer without sending data
*/
void GcodeSuite::M260() {
// Set the target address
if (parser.seen('A')) i2c.address(parser.value_byte());
// Add a new byte to the buffer
if (parser.seen('B')) i2c.addbyte(parser.value_byte());
// Flush the buffer to the bus
if (parser.seen('S')) i2c.send();
// Reset and rewind the buffer
else if (parser.seen('R')) i2c.reset();
}
/**
* M261: Request X bytes from I2C slave device
*
* Usage: M261 A<slave device address base 10> B<number of bytes>
*/
void GcodeSuite::M261() {
if (parser.seen('A')) i2c.address(parser.value_byte());
uint8_t bytes = parser.byteval('B', 1);
if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE)
i2c.relay(bytes);
else
SERIAL_ERROR_MSG("Bad i2c request");
}
#endif

View File

@@ -0,0 +1,91 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_COLOR_LEDS
#include "../../gcode.h"
#include "../../../feature/leds/leds.h"
/**
* M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
* and Brightness - Use P (for NEOPIXEL only)
*
* Always sets all 3 or 4 components. If a component is left out, set to 0.
* If brightness is left out, no value changed
*
* With NEOPIXEL_LED:
* I<index> Set the NeoPixel index to affect. Default: All
*
* With NEOPIXEL2_SEPARATE:
* S<index> The NeoPixel strip to set. Default is index 0.
*
* Examples:
*
* M150 R255 ; Turn LED red
* M150 R255 U127 ; Turn LED orange (PWM only)
* M150 ; Turn LED off
* M150 R U B ; Turn LED white
* M150 W ; Turn LED white using a white LED
* M150 P127 ; Set LED 50% brightness
* M150 P ; Set LED full brightness
* M150 I1 R ; Set NEOPIXEL index 1 to red
* M150 S1 I1 R ; Set SEPARATE index 1 to red
*/
void GcodeSuite::M150() {
#if ENABLED(NEOPIXEL_LED)
const int8_t index = parser.intval('I', -1);
#if ENABLED(NEOPIXEL2_SEPARATE)
int8_t brightness, unit = parser.intval('S', -1);
switch (unit) {
case -1: neo2.neoindex = index; // fall-thru
case 0: neo.neoindex = index; brightness = neo.brightness(); break;
case 1: neo2.neoindex = index; brightness = neo2.brightness(); break;
}
#else
const uint8_t brightness = neo.brightness();
neo.neoindex = index;
#endif
#endif
const LEDColor color = LEDColor(
parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
OPTARG(HAS_WHITE_LED, parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0)
OPTARG(NEOPIXEL_LED, parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : brightness)
);
#if ENABLED(NEOPIXEL2_SEPARATE)
switch (unit) {
case 0: leds.set_color(color); return;
case 1: leds2.set_color(color); return;
}
#endif
// If 'S' is not specified use both
leds.set_color(color);
TERN_(NEOPIXEL2_SEPARATE, leds2.set_color(color));
}
#endif // HAS_COLOR_LEDS

View File

@@ -0,0 +1,93 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if ENABLED(MAX7219_GCODE)
#include "../../gcode.h"
#include "../../../feature/max7219.h"
/**
* M7219: Control the Max7219 LED matrix
*
* I - Initialize (clear) the matrix
* F - Fill the matrix (set all bits)
* P - Dump the led_line[] array values
* C<column> - Set a column to the bitmask given by 'V' (Units 0-3 in portrait layout)
* R<row> - Set a row to the bitmask given by 'V' (Units 0-3 in landscape layout)
* X<pos> - X index of an LED to set or toggle
* Y<pos> - Y index of an LED to set or toggle
* V<value> - LED on/off state or row/column bitmask (8, 16, 24, or 32-bits)
* ('C' / 'R' can be used to update up to 4 units at once)
*
* Directly set a native matrix row to the 8-bit value 'V':
* D<line> - Display line (0..7)
* U<unit> - Unit index (0..MAX7219_NUMBER_UNITS-1)
*/
void GcodeSuite::M7219() {
if (parser.seen('I')) {
max7219.register_setup();
max7219.clear();
}
if (parser.seen('F')) max7219.fill();
const uint32_t v = parser.ulongval('V');
if (parser.seenval('R')) {
const uint8_t r = parser.value_byte();
max7219.set_row(r, v);
}
else if (parser.seenval('C')) {
const uint8_t c = parser.value_byte();
max7219.set_column(c, v);
}
else if (parser.seenval('X') || parser.seenval('Y')) {
const uint8_t x = parser.byteval('X'), y = parser.byteval('Y');
if (parser.seenval('V'))
max7219.led_set(x, y, v > 0);
else
max7219.led_toggle(x, y);
}
else if (parser.seen('D')) {
const uint8_t uline = parser.value_byte() & 0x7,
line = uline + (parser.byteval('U') << 3);
if (line < MAX7219_LINES) {
max7219.led_line[line] = v;
return max7219.refresh_line(line);
}
}
if (parser.seen('P')) {
LOOP_L_N(r, MAX7219_LINES) {
SERIAL_ECHOPGM("led_line[");
if (r < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(r);
SERIAL_ECHOPGM("]=");
for (uint8_t b = 8; b--;) SERIAL_CHAR('0' + TEST(max7219.led_line[r], b));
SERIAL_EOL();
}
}
}
#endif // MAX7219_GCODE

View File

@@ -0,0 +1,65 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(GCODE_MACROS)
#include "../../gcode.h"
#include "../../queue.h"
#include "../../parser.h"
char gcode_macros[GCODE_MACROS_SLOTS][GCODE_MACROS_SLOT_SIZE + 1] = {{ 0 }};
/**
* M810_819: Set/execute a G-code macro.
*
* Usage:
* M810 <command>|... Set Macro 0 to the given commands, separated by the pipe character
* M810 Execute Macro 0
*/
void GcodeSuite::M810_819() {
const uint8_t index = parser.codenum - 810;
if (index >= GCODE_MACROS_SLOTS) return;
const size_t len = strlen(parser.string_arg);
if (len) {
// Set a macro
if (len > GCODE_MACROS_SLOT_SIZE)
SERIAL_ERROR_MSG("Macro too long.");
else {
char c, *s = parser.string_arg, *d = gcode_macros[index];
do {
c = *s++;
*d++ = c == '|' ? '\n' : c;
} while (c);
}
}
else {
// Execute a macro
char * const cmd = gcode_macros[index];
if (strlen(cmd)) process_subcommands_now(cmd);
}
}
#endif // GCODE_MACROS

View File

@@ -0,0 +1,101 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(MIXING_EXTRUDER)
#include "../../gcode.h"
#include "../../../feature/mixing.h"
/**
* M163: Set a single mix factor for a mixing extruder
* This is called "weight" by some systems.
* Must be followed by M164 to normalize and commit them.
*
* S[index] The channel index to set
* P[float] The mix value
*/
void GcodeSuite::M163() {
const int mix_index = parser.intval('S');
if (mix_index < MIXING_STEPPERS)
mixer.set_collector(mix_index, parser.floatval('P'));
}
/**
* M164: Normalize and commit the mix.
*
* S[index] The virtual tool to store
* If 'S' is omitted update the active virtual tool.
*/
void GcodeSuite::M164() {
#if MIXING_VIRTUAL_TOOLS > 1
const int tool_index = parser.intval('S', -1);
#else
constexpr int tool_index = 0;
#endif
if (tool_index >= 0) {
if (tool_index < MIXING_VIRTUAL_TOOLS)
mixer.normalize(tool_index);
}
else
mixer.normalize();
}
#if ENABLED(DIRECT_MIXING_IN_G1)
/**
* M165: Set multiple mix factors for a mixing extruder.
* Omitted factors will be set to 0.
* The mix is normalized and stored in the current virtual tool.
*
* A[factor] Mix factor for extruder stepper 1
* B[factor] Mix factor for extruder stepper 2
* C[factor] Mix factor for extruder stepper 3
* D[factor] Mix factor for extruder stepper 4
* H[factor] Mix factor for extruder stepper 5
* I[factor] Mix factor for extruder stepper 6
*/
void GcodeSuite::M165() {
// Get mixing parameters from the GCode
// The total "must" be 1.0 (but it will be normalized)
// If no mix factors are given, the old mix is preserved
const char mixing_codes[] = { LIST_N(MIXING_STEPPERS, 'A', 'B', 'C', 'D', 'H', 'I') };
uint8_t mix_bits = 0;
MIXER_STEPPER_LOOP(i) {
if (parser.seenval(mixing_codes[i])) {
SBI(mix_bits, i);
mixer.set_collector(i, parser.value_float());
}
}
// If any mixing factors were included, clear the rest
// If none were included, preserve the last mix
if (mix_bits) {
MIXER_STEPPER_LOOP(i)
if (!TEST(mix_bits, i)) mixer.set_collector(i, 0.0f);
mixer.normalize();
}
}
#endif // DIRECT_MIXING_IN_G1
#endif // MIXING_EXTRUDER

View File

@@ -0,0 +1,103 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(GRADIENT_MIX)
#include "../../gcode.h"
#include "../../../module/motion.h"
#include "../../../module/planner.h"
#include "../../../feature/mixing.h"
inline void echo_mix() {
SERIAL_ECHOPAIR(" (", mixer.mix[0], "%|", mixer.mix[1], "%)");
}
inline void echo_zt(const int t, const_float_t z) {
mixer.update_mix_from_vtool(t);
SERIAL_ECHOPAIR_P(SP_Z_STR, z, SP_T_STR, t);
echo_mix();
}
/**
* M166: Set a simple gradient mix for a two-component mixer
* based on the Geeetech A10M implementation by Jone Liu.
*
* S[bool] - Enable / disable gradients
* A[float] - Starting Z for the gradient
* Z[float] - Ending Z for the gradient. (Must be greater than the starting Z.)
* I[index] - V-Tool to use as the starting mix.
* J[index] - V-Tool to use as the ending mix.
*
* T[index] - A V-Tool index to use as an alias for the Gradient (Requires GRADIENT_VTOOL)
* T with no index clears the setting. Note: This can match the I or J value.
*
* Example: M166 S1 A0 Z20 I0 J1
*/
void GcodeSuite::M166() {
if (parser.seenval('A')) mixer.gradient.start_z = parser.value_float();
if (parser.seenval('Z')) mixer.gradient.end_z = parser.value_float();
if (parser.seenval('I')) mixer.gradient.start_vtool = (uint8_t)constrain(parser.value_int(), 0, MIXING_VIRTUAL_TOOLS);
if (parser.seenval('J')) mixer.gradient.end_vtool = (uint8_t)constrain(parser.value_int(), 0, MIXING_VIRTUAL_TOOLS);
#if ENABLED(GRADIENT_VTOOL)
if (parser.seen('T')) mixer.gradient.vtool_index = parser.byteval('T', -1);
#endif
if (parser.seen('S')) mixer.gradient.enabled = parser.value_bool();
mixer.refresh_gradient();
SERIAL_ECHOPGM("Gradient Mix ");
serialprint_onoff(mixer.gradient.enabled);
if (mixer.gradient.enabled) {
#if ENABLED(GRADIENT_VTOOL)
if (mixer.gradient.vtool_index >= 0) {
SERIAL_ECHOPAIR(" (T", mixer.gradient.vtool_index);
SERIAL_CHAR(')');
}
#endif
SERIAL_ECHOPGM(" ; Start");
echo_zt(mixer.gradient.start_vtool, mixer.gradient.start_z);
SERIAL_ECHOPGM(" ; End");
echo_zt(mixer.gradient.end_vtool, mixer.gradient.end_z);
mixer.update_mix_from_gradient();
SERIAL_ECHOPGM(" ; Current Z");
#if ENABLED(DELTA)
get_cartesian_from_steppers();
SERIAL_ECHO(cartes.z);
#else
SERIAL_ECHO(planner.get_axis_position_mm(Z_AXIS));
#endif
echo_mix();
}
SERIAL_EOL();
}
#endif // GRADIENT_MIX

View File

@@ -0,0 +1,126 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if HAS_ETHERNET
#include "../../../feature/ethernet.h"
#include "../../../core/serial.h"
#include "../../gcode.h"
void say_ethernet() { SERIAL_ECHOPGM(" Ethernet "); }
void ETH0_report() {
say_ethernet();
SERIAL_ECHO_TERNARY(ethernet.hardware_enabled, "port ", "en", "dis", "abled.\n");
if (ethernet.hardware_enabled) {
say_ethernet();
SERIAL_ECHO_TERNARY(ethernet.have_telnet_client, "client ", "en", "dis", "abled.\n");
}
else
SERIAL_ECHOLNPGM("Send 'M552 S1' to enable.");
}
void MAC_report() {
uint8_t mac[6];
if (ethernet.hardware_enabled) {
Ethernet.MACAddress(mac);
SERIAL_ECHOPGM(" MAC: ");
LOOP_L_N(i, 6) {
if (mac[i] < 16) SERIAL_CHAR('0');
SERIAL_PRINT(mac[i], PrintBase::Hex);
if (i < 5) SERIAL_CHAR(':');
}
}
SERIAL_EOL();
}
// Display current values when the link is active,
// otherwise show the stored values
void ip_report(const uint16_t cmd, PGM_P const post, const IPAddress &ipo) {
SERIAL_CHAR('M'); SERIAL_ECHO(cmd); SERIAL_CHAR(' ');
LOOP_L_N(i, 4) {
SERIAL_ECHO(ipo[i]);
if (i < 3) SERIAL_CHAR('.');
}
SERIAL_ECHOPGM(" ; ");
SERIAL_ECHOPGM_P(post);
SERIAL_EOL();
}
void M552_report() {
ip_report(552, PSTR("ip address"), Ethernet.linkStatus() == LinkON ? Ethernet.localIP() : ethernet.ip);
}
void M553_report() {
ip_report(553, PSTR("subnet mask"), Ethernet.linkStatus() == LinkON ? Ethernet.subnetMask() : ethernet.subnet);
}
void M554_report() {
ip_report(554, PSTR("gateway"), Ethernet.linkStatus() == LinkON ? Ethernet.gatewayIP() : ethernet.gateway);
}
/**
* M552: Set IP address, enable/disable network interface
*
* S0 : disable networking
* S1 : enable networking
* S-1 : reset network interface
*
* Pnnn : Set IP address, 0.0.0.0 means acquire an IP address using DHCP
*/
void GcodeSuite::M552() {
const bool seenP = parser.seenval('P');
if (seenP) ethernet.ip.fromString(parser.value_string());
const bool seenS = parser.seenval('S');
if (seenS) {
switch (parser.value_int()) {
case -1:
if (ethernet.telnetClient) ethernet.telnetClient.stop();
ethernet.init();
break;
case 0: ethernet.hardware_enabled = false; break;
case 1: ethernet.hardware_enabled = true; break;
default: break;
}
}
const bool nopar = !seenS && !seenP;
if (nopar || seenS) ETH0_report();
if (nopar || seenP) M552_report();
}
/**
* M553 Pnnn - Set netmask
*/
void GcodeSuite::M553() {
if (parser.seenval('P')) ethernet.subnet.fromString(parser.value_string());
M553_report();
}
/**
* M554 Pnnn - Set Gateway
*/
void GcodeSuite::M554() {
if (parser.seenval('P')) ethernet.gateway.fromString(parser.value_string());
M554_report();
}
#endif // HAS_ETHERNET

View File

@@ -0,0 +1,83 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if ENABLED(PASSWORD_FEATURE)
#include "../../../feature/password/password.h"
#include "../../../core/serial.h"
#include "../../gcode.h"
//
// M510: Lock Printer
//
void GcodeSuite::M510() {
password.lock_machine();
}
//
// M511: Unlock Printer
//
#if ENABLED(PASSWORD_UNLOCK_GCODE)
void GcodeSuite::M511() {
if (password.is_locked) {
password.value_entry = parser.ulongval('P');
password.authentication_check();
}
}
#endif // PASSWORD_UNLOCK_GCODE
//
// M512: Set/Change/Remove Password
//
#if ENABLED(PASSWORD_CHANGE_GCODE)
void GcodeSuite::M512() {
if (password.is_set && parser.ulongval('P') != password.value) {
SERIAL_ECHOLNPGM(STR_WRONG_PASSWORD);
return;
}
if (parser.seenval('S')) {
password.value_entry = parser.ulongval('S');
if (password.value_entry < CAT(1e, PASSWORD_LENGTH)) {
password.is_set = true;
password.value = password.value_entry;
SERIAL_ECHOLNPAIR(STR_PASSWORD_SET, password.value); // TODO: Update password.string
}
else
SERIAL_ECHOLNPGM(STR_PASSWORD_TOO_LONG);
}
else {
password.is_set = false;
SERIAL_ECHOLNPGM(STR_PASSWORD_REMOVED);
}
SERIAL_ECHOLNPGM(STR_REMINDER_SAVE_SETTINGS);
}
#endif // PASSWORD_CHANGE_GCODE
#endif // PASSWORD_FEATURE

View File

@@ -0,0 +1,41 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(NOZZLE_PARK_FEATURE)
#include "../../gcode.h"
#include "../../../libs/nozzle.h"
#include "../../../module/motion.h"
/**
* G27: Park the nozzle
*/
void GcodeSuite::G27() {
// Don't allow nozzle parking without homing first
if (homing_needed_error()) return;
nozzle.park(parser.ushortval('P'));
}
#endif // NOZZLE_PARK_FEATURE

View File

@@ -0,0 +1,60 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if SAVED_POSITIONS
#include "../../gcode.h"
#include "../../../module/motion.h"
#define DEBUG_OUT ENABLED(SAVED_POSITIONS_DEBUG)
#include "../../../core/debug_out.h"
/**
* G60: Save current position
*
* S<slot> - Memory slot # (0-based) to save into (default 0)
*/
void GcodeSuite::G60() {
const uint8_t slot = parser.byteval('S');
if (slot >= SAVED_POSITIONS) {
SERIAL_ERROR_MSG(STR_INVALID_POS_SLOT STRINGIFY(SAVED_POSITIONS));
return;
}
stored_position[slot] = current_position;
SBI(saved_slots[slot >> 3], slot & 0x07);
#if ENABLED(SAVED_POSITIONS_DEBUG)
DEBUG_ECHOPAIR(STR_SAVED_POS " S", slot);
const xyze_pos_t &pos = stored_position[slot];
DEBUG_ECHOLNPAIR_F_P(
LIST_N(DOUBLE(LOGICAL_AXES), SP_E_STR, pos.e,
PSTR(" : X"), pos.x, SP_Y_STR, pos.y, SP_Z_STR, pos.z,
SP_I_STR, pos.i, SP_J_STR, pos.j, SP_K_STR, pos.k)
);
#endif
}
#endif // SAVED_POSITIONS

View File

@@ -0,0 +1,95 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if SAVED_POSITIONS
#include "../../../module/planner.h"
#include "../../gcode.h"
#include "../../../module/motion.h"
#include "../../../module/planner.h"
#define DEBUG_OUT ENABLED(SAVED_POSITIONS_DEBUG)
#include "../../../core/debug_out.h"
/**
* G61: Return to saved position
*
* F<rate> - Feedrate (optional) for the move back.
* S<slot> - Slot # (0-based) to restore from (default 0).
* X Y Z E - Axes to restore. At least one is required.
*
* If XYZE are not given, default restore uses the smart blocking move.
*/
void GcodeSuite::G61(void) {
const uint8_t slot = parser.byteval('S');
#define SYNC_E(POINT) TERN_(HAS_EXTRUDERS, planner.set_e_position_mm((destination.e = current_position.e = (POINT))))
#if SAVED_POSITIONS < 256
if (slot >= SAVED_POSITIONS) {
SERIAL_ERROR_MSG(STR_INVALID_POS_SLOT STRINGIFY(SAVED_POSITIONS));
return;
}
#endif
// No saved position? No axes being restored?
if (!TEST(saved_slots[slot >> 3], slot & 0x07)) return;
// Apply any given feedrate over 0.0
feedRate_t saved_feedrate = feedrate_mm_s;
const float fr = parser.linearval('F');
if (fr > 0.0) feedrate_mm_s = MMM_TO_MMS(fr);
if (!parser.seen_axis()) {
DEBUG_ECHOLNPGM("Default position restore");
do_blocking_move_to(stored_position[slot], feedrate_mm_s);
SYNC_E(stored_position[slot].e);
}
else {
if (parser.seen(LINEAR_AXIS_GANG("X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
DEBUG_ECHOPAIR(STR_RESTORING_POS " S", slot);
LOOP_LINEAR_AXES(i) {
destination[i] = parser.seen(AXIS_CHAR(i))
? stored_position[slot][i] + parser.value_axis_units((AxisEnum)i)
: current_position[i];
DEBUG_CHAR(' ', AXIS_CHAR(i));
DEBUG_ECHO_F(destination[i]);
}
DEBUG_EOL();
// Move to the saved position
prepare_line_to_destination();
}
#if HAS_EXTRUDERS
if (parser.seen_test('E')) {
DEBUG_ECHOLNPAIR(STR_RESTORING_POS " S", slot, " E", current_position.e, "=>", stored_position[slot].e);
SYNC_E(stored_position[slot].e);
}
#endif
}
feedrate_mm_s = saved_feedrate;
}
#endif // SAVED_POSITIONS

View File

@@ -0,0 +1,89 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(PARK_HEAD_ON_PAUSE)
#include "../../gcode.h"
#include "../../parser.h"
#include "../../../feature/pause.h"
#include "../../../lcd/marlinui.h"
#include "../../../module/motion.h"
#include "../../../module/printcounter.h"
#include "../../../sd/cardreader.h"
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../../../feature/powerloss.h"
#endif
/**
* M125: Store current position and move to parking position.
* Called on pause (by M25) to prevent material leaking onto the
* object. On resume (M24) the head will be moved back and the
* print will resume.
*
* When not actively SD printing, M125 simply moves to the park
* position and waits, resuming with a button click or M108.
* Without PARK_HEAD_ON_PAUSE the M125 command does nothing.
*
* L<linear> = Override retract Length
* X<pos> = Override park position X
* Y<pos> = Override park position Y
* Z<linear> = Override Z raise
*
* With an LCD menu:
* P<bool> = Always show a prompt and await a response
*/
void GcodeSuite::M125() {
// Initial retract before move to filament change position
const float retract = TERN0(HAS_EXTRUDERS, -ABS(parser.axisunitsval('L', E_AXIS, PAUSE_PARK_RETRACT_LENGTH)));
xyz_pos_t park_point = NOZZLE_PARK_POINT;
// Move XY axes to filament change position or given position
if (parser.seenval('X')) park_point.x = RAW_X_POSITION(parser.linearval('X'));
if (parser.seenval('Y')) park_point.y = RAW_X_POSITION(parser.linearval('Y'));
// Lift Z axis
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
#if HAS_HOTEND_OFFSET && NONE(DUAL_X_CARRIAGE, DELTA)
park_point += hotend_offset[active_extruder];
#endif
const bool sd_printing = TERN0(SDSUPPORT, IS_SD_PRINTING());
ui.pause_show_message(PAUSE_MESSAGE_PARKING, PAUSE_MODE_PAUSE_PRINT);
// If possible, show an LCD prompt with the 'P' flag
const bool show_lcd = TERN0(HAS_LCD_MENU, parser.boolval('P'));
if (pause_print(retract, park_point, show_lcd, 0)) {
if (ENABLED(EXTENSIBLE_UI) || BOTH(EMERGENCY_PARSER, HOST_PROMPT_SUPPORT) || !sd_printing || show_lcd) {
wait_for_confirmation(false, 0);
resume_print(0, 0, -retract, 0);
}
}
}
#endif // PARK_HEAD_ON_PAUSE

View File

@@ -0,0 +1,168 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(ADVANCED_PAUSE_FEATURE)
#include "../../gcode.h"
#include "../../../feature/pause.h"
#include "../../../module/motion.h"
#include "../../../module/printcounter.h"
#include "../../../lcd/marlinui.h"
#if HAS_MULTI_EXTRUDER
#include "../../../module/tool_change.h"
#endif
#if ENABLED(MMU2_MENUS)
#include "../../../lcd/menu/menu_mmu2.h"
#endif
#if ENABLED(MIXING_EXTRUDER)
#include "../../../feature/mixing.h"
#endif
#if HAS_FILAMENT_SENSOR
#include "../../../feature/runout.h"
#endif
/**
* M600: Pause for filament change
*
* E[distance] - Retract the filament this far
* Z[distance] - Move the Z axis by this distance
* X[position] - Move to this X position, with Y
* Y[position] - Move to this Y position, with X
* U[distance] - Retract distance for removal (manual reload)
* L[distance] - Extrude distance for insertion (manual reload)
* B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
* T[toolhead] - Select extruder for filament change
* R[temp] - Resume temperature (in current units)
*
* Default values are used for omitted arguments.
*/
void GcodeSuite::M600() {
#if ENABLED(MIXING_EXTRUDER)
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
const uint8_t old_mixing_tool = mixer.get_current_vtool();
mixer.T(MIXER_DIRECT_SET_TOOL);
MIXER_STEPPER_LOOP(i) mixer.set_collector(i, i == uint8_t(target_e_stepper) ? 1.0 : 0.0);
mixer.normalize();
const int8_t target_extruder = active_extruder;
#else
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
#endif
#if ENABLED(DUAL_X_CARRIAGE)
int8_t DXC_ext = target_extruder;
if (!parser.seen_test('T')) { // If no tool index is specified, M600 was (probably) sent in response to filament runout.
// In this case, for duplicating modes set DXC_ext to the extruder that ran out.
#if MULTI_FILAMENT_SENSOR
if (idex_is_duplicating())
DXC_ext = (READ(FIL_RUNOUT2_PIN) == FIL_RUNOUT2_STATE) ? 1 : 0;
#else
DXC_ext = active_extruder;
#endif
}
#endif
// Show initial "wait for start" message
#if DISABLED(MMU2_MENUS)
ui.pause_show_message(PAUSE_MESSAGE_CHANGING, PAUSE_MODE_PAUSE_PRINT, target_extruder);
#endif
#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
// If needed, home before parking for filament change
home_if_needed(true);
#endif
#if HAS_MULTI_EXTRUDER
// Change toolhead if specified
const uint8_t active_extruder_before_filament_change = active_extruder;
if (active_extruder != target_extruder && TERN1(DUAL_X_CARRIAGE, !idex_is_duplicating()))
tool_change(target_extruder, false);
#endif
// Initial retract before move to filament change position
const float retract = -ABS(parser.axisunitsval('E', E_AXIS, PAUSE_PARK_RETRACT_LENGTH));
xyz_pos_t park_point NOZZLE_PARK_POINT;
// Lift Z axis
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
// Move XY axes to filament change position or given position
if (parser.seenval('X')) park_point.x = parser.linearval('X');
if (parser.seenval('Y')) park_point.y = parser.linearval('Y');
#if HAS_HOTEND_OFFSET && NONE(DUAL_X_CARRIAGE, DELTA)
park_point += hotend_offset[active_extruder];
#endif
#if ENABLED(MMU2_MENUS)
// For MMU2 reset retract and load/unload values so they don't mess with MMU filament handling
constexpr float unload_length = 0.5f,
slow_load_length = 0.0f,
fast_load_length = 0.0f;
#else
// Unload filament
const float unload_length = -ABS(parser.axisunitsval('U', E_AXIS, fc_settings[active_extruder].unload_length));
// Slow load filament
constexpr float slow_load_length = FILAMENT_CHANGE_SLOW_LOAD_LENGTH;
// Fast load filament
const float fast_load_length = ABS(parser.axisunitsval('L', E_AXIS, fc_settings[active_extruder].load_length));
#endif
const int beep_count = parser.intval('B', -1
#ifdef FILAMENT_CHANGE_ALERT_BEEPS
+ 1 + FILAMENT_CHANGE_ALERT_BEEPS
#endif
);
if (pause_print(retract, park_point, true, unload_length DXC_PASS)) {
#if ENABLED(MMU2_MENUS)
mmu2_M600();
resume_print(slow_load_length, fast_load_length, 0, beep_count DXC_PASS);
#else
wait_for_confirmation(true, beep_count DXC_PASS);
resume_print(slow_load_length, fast_load_length, ADVANCED_PAUSE_PURGE_LENGTH,
beep_count, (parser.seenval('R') ? parser.value_celsius() : 0) DXC_PASS);
#endif
}
#if HAS_MULTI_EXTRUDER
// Restore toolhead if it was changed
if (active_extruder_before_filament_change != active_extruder)
tool_change(active_extruder_before_filament_change, false);
#endif
TERN_(MIXING_EXTRUDER, mixer.T(old_mixing_tool)); // Restore original mixing tool
}
#endif // ADVANCED_PAUSE_FEATURE

View File

@@ -0,0 +1,65 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(ADVANCED_PAUSE_FEATURE)
#include "../../gcode.h"
#include "../../../feature/pause.h"
#include "../../../module/motion.h"
#include "../../../module/printcounter.h"
#if HAS_MULTI_EXTRUDER
#include "../../../module/tool_change.h"
#endif
/**
* M603: Configure filament change
*
* T[toolhead] - Select extruder to configure, active extruder if not specified
* U[distance] - Retract distance for removal, for the specified extruder
* L[distance] - Extrude distance for insertion, for the specified extruder
*/
void GcodeSuite::M603() {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
// Unload length
if (parser.seen('U')) {
fc_settings[target_extruder].unload_length = ABS(parser.value_axis_units(E_AXIS));
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
NOMORE(fc_settings[target_extruder].unload_length, EXTRUDE_MAXLENGTH);
#endif
}
// Load length
if (parser.seen('L')) {
fc_settings[target_extruder].load_length = ABS(parser.value_axis_units(E_AXIS));
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
NOMORE(fc_settings[target_extruder].load_length, EXTRUDE_MAXLENGTH);
#endif
}
}
#endif // ADVANCED_PAUSE_FEATURE

View File

@@ -0,0 +1,242 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if ENABLED(FILAMENT_LOAD_UNLOAD_GCODES)
#include "../../gcode.h"
#include "../../../MarlinCore.h"
#include "../../../module/motion.h"
#include "../../../module/temperature.h"
#include "../../../feature/pause.h"
#include "../../../lcd/marlinui.h"
#if HAS_MULTI_EXTRUDER
#include "../../../module/tool_change.h"
#endif
#if HAS_PRUSA_MMU2
#include "../../../feature/mmu/mmu2.h"
#endif
#if ENABLED(MIXING_EXTRUDER)
#include "../../../feature/mixing.h"
#endif
/**
* M701: Load filament
*
* T<extruder> - Extruder number. Required for mixing extruder.
* For non-mixing, current extruder if omitted.
* Z<distance> - Move the Z axis by this distance
* L<distance> - Extrude distance for insertion (positive value) (manual reload)
*
* Default values are used for omitted arguments.
*/
void GcodeSuite::M701() {
xyz_pos_t park_point = NOZZLE_PARK_POINT;
// Don't raise Z if the machine isn't homed
if (TERN0(NO_MOTION_BEFORE_HOMING, axes_should_home())) park_point.z = 0;
#if ENABLED(MIXING_EXTRUDER)
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
const uint8_t old_mixing_tool = mixer.get_current_vtool();
mixer.T(MIXER_DIRECT_SET_TOOL);
MIXER_STEPPER_LOOP(i) mixer.set_collector(i, (i == (uint8_t)target_e_stepper) ? 1.0 : 0.0);
mixer.normalize();
const int8_t target_extruder = active_extruder;
#else
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
#endif
// Z axis lift
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
// Show initial "wait for load" message
ui.pause_show_message(PAUSE_MESSAGE_LOAD, PAUSE_MODE_LOAD_FILAMENT, target_extruder);
#if HAS_MULTI_EXTRUDER && (HAS_PRUSA_MMU1 || !HAS_MMU)
// Change toolhead if specified
uint8_t active_extruder_before_filament_change = active_extruder;
if (active_extruder != target_extruder)
tool_change(target_extruder, false);
#endif
auto move_z_by = [](const_float_t zdist) {
if (zdist) {
destination = current_position;
destination.z += zdist;
prepare_internal_move_to_destination(NOZZLE_PARK_Z_FEEDRATE);
}
};
// Raise the Z axis (with max limit)
const float park_raise = _MIN(park_point.z, (Z_MAX_POS) - current_position.z);
move_z_by(park_raise);
// Load filament
#if HAS_PRUSA_MMU2
mmu2.load_filament_to_nozzle(target_extruder);
#else
constexpr float purge_length = ADVANCED_PAUSE_PURGE_LENGTH,
slow_load_length = FILAMENT_CHANGE_SLOW_LOAD_LENGTH;
const float fast_load_length = ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS)
: fc_settings[active_extruder].load_length);
load_filament(
slow_load_length, fast_load_length, purge_length,
FILAMENT_CHANGE_ALERT_BEEPS,
true, // show_lcd
thermalManager.still_heating(target_extruder), // pause_for_user
PAUSE_MODE_LOAD_FILAMENT // pause_mode
#if ENABLED(DUAL_X_CARRIAGE)
, target_extruder // Dual X target
#endif
);
#endif
// Restore Z axis
move_z_by(-park_raise);
#if HAS_MULTI_EXTRUDER && (HAS_PRUSA_MMU1 || !HAS_MMU)
// Restore toolhead if it was changed
if (active_extruder_before_filament_change != active_extruder)
tool_change(active_extruder_before_filament_change, false);
#endif
TERN_(MIXING_EXTRUDER, mixer.T(old_mixing_tool)); // Restore original mixing tool
// Show status screen
ui.pause_show_message(PAUSE_MESSAGE_STATUS);
}
/**
* M702: Unload filament
*
* T<extruder> - Extruder number. Required for mixing extruder.
* For non-mixing, if omitted, current extruder
* (or ALL extruders with FILAMENT_UNLOAD_ALL_EXTRUDERS).
* Z<distance> - Move the Z axis by this distance
* U<distance> - Retract distance for removal (manual reload)
*
* Default values are used for omitted arguments.
*/
void GcodeSuite::M702() {
xyz_pos_t park_point = NOZZLE_PARK_POINT;
// Don't raise Z if the machine isn't homed
if (TERN0(NO_MOTION_BEFORE_HOMING, axes_should_home())) park_point.z = 0;
#if ENABLED(MIXING_EXTRUDER)
const uint8_t old_mixing_tool = mixer.get_current_vtool();
#if ENABLED(FILAMENT_UNLOAD_ALL_EXTRUDERS)
float mix_multiplier = 1.0;
const bool seenT = parser.seenval('T');
if (!seenT) {
mixer.T(MIXER_AUTORETRACT_TOOL);
mix_multiplier = MIXING_STEPPERS;
}
#else
constexpr bool seenT = true;
#endif
if (seenT) {
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
mixer.T(MIXER_DIRECT_SET_TOOL);
MIXER_STEPPER_LOOP(i) mixer.set_collector(i, (i == (uint8_t)target_e_stepper) ? 1.0 : 0.0);
mixer.normalize();
}
const int8_t target_extruder = active_extruder;
#else
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
#endif
// Z axis lift
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
// Show initial "wait for unload" message
ui.pause_show_message(PAUSE_MESSAGE_UNLOAD, PAUSE_MODE_UNLOAD_FILAMENT, target_extruder);
#if HAS_MULTI_EXTRUDER && (HAS_PRUSA_MMU1 || !HAS_MMU)
// Change toolhead if specified
uint8_t active_extruder_before_filament_change = active_extruder;
if (active_extruder != target_extruder)
tool_change(target_extruder, false);
#endif
// Lift Z axis
if (park_point.z > 0)
do_blocking_move_to_z(_MIN(current_position.z + park_point.z, Z_MAX_POS), feedRate_t(NOZZLE_PARK_Z_FEEDRATE));
// Unload filament
#if HAS_PRUSA_MMU2
mmu2.unload();
#else
#if BOTH(HAS_MULTI_EXTRUDER, FILAMENT_UNLOAD_ALL_EXTRUDERS)
if (!parser.seenval('T')) {
HOTEND_LOOP() {
if (e != active_extruder) tool_change(e, false);
unload_filament(-fc_settings[e].unload_length, true, PAUSE_MODE_UNLOAD_FILAMENT);
}
}
else
#endif
{
// Unload length
const float unload_length = -ABS(parser.seen('U') ? parser.value_axis_units(E_AXIS)
: fc_settings[target_extruder].unload_length);
unload_filament(unload_length, true, PAUSE_MODE_UNLOAD_FILAMENT
#if ALL(FILAMENT_UNLOAD_ALL_EXTRUDERS, MIXING_EXTRUDER)
, mix_multiplier
#endif
);
}
#endif
// Restore Z axis
if (park_point.z > 0)
do_blocking_move_to_z(_MAX(current_position.z - park_point.z, 0), feedRate_t(NOZZLE_PARK_Z_FEEDRATE));
#if HAS_MULTI_EXTRUDER && (HAS_PRUSA_MMU1 || !HAS_MMU)
// Restore toolhead if it was changed
if (active_extruder_before_filament_change != active_extruder)
tool_change(active_extruder_before_filament_change, false);
#endif
TERN_(MIXING_EXTRUDER, mixer.T(old_mixing_tool)); // Restore original mixing tool
// Show status screen
ui.pause_show_message(PAUSE_MESSAGE_STATUS);
}
#endif // ADVANCED_PAUSE_FEATURE

View File

@@ -0,0 +1,70 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_POWER_MONITOR
#include "../../../feature/power_monitor.h"
#include "../../../MarlinCore.h"
#include "../../gcode.h"
/**
* M430: Enable/disable current LCD display
* With no parameters report the system current draw (in Amps)
*
* I[bool] - Set Display of current on the LCD
* V[bool] - Set Display of voltage on the LCD
* W[bool] - Set Display of power on the LCD
*/
void GcodeSuite::M430() {
bool do_report = true;
#if HAS_WIRED_LCD
#if ENABLED(POWER_MONITOR_CURRENT)
if (parser.seen('I')) { power_monitor.set_current_display(parser.value_bool()); do_report = false; }
#endif
#if ENABLED(POWER_MONITOR_VOLTAGE)
if (parser.seen('V')) { power_monitor.set_voltage_display(parser.value_bool()); do_report = false; }
#endif
#if HAS_POWER_MONITOR_WATTS
if (parser.seen('W')) { power_monitor.set_power_display(parser.value_bool()); do_report = false; }
#endif
#endif
if (do_report) {
SERIAL_ECHOLNPAIR(
#if ENABLED(POWER_MONITOR_CURRENT)
"Current: ", power_monitor.getAmps(), "A"
#if ENABLED(POWER_MONITOR_VOLTAGE)
" "
#endif
#endif
#if ENABLED(POWER_MONITOR_VOLTAGE)
"Voltage: ", power_monitor.getVolts(), "V"
#endif
#if HAS_POWER_MONITOR_WATTS
" Power: ", power_monitor.getPower(), "W"
#endif
);
}
}
#endif // HAS_POWER_MONITOR

View File

@@ -0,0 +1,89 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../../gcode.h"
#include "../../../feature/powerloss.h"
#include "../../../module/motion.h"
#include "../../../lcd/marlinui.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_POWER_LOSS_RECOVERY)
#include "../../../core/debug_out.h"
void menu_job_recovery();
inline void plr_error(PGM_P const prefix) {
#if ENABLED(DEBUG_POWER_LOSS_RECOVERY)
DEBUG_ECHO_START();
DEBUG_ECHOPGM_P(prefix);
DEBUG_ECHOLNPGM(" Job Recovery Data");
#else
UNUSED(prefix);
#endif
}
#if HAS_LCD_MENU
void lcd_power_loss_recovery_cancel();
#endif
/**
* M1000: Resume from power-loss (undocumented)
* - With 'S' go to the Resume/Cancel menu
* - With no parameters, run recovery commands
*/
void GcodeSuite::M1000() {
if (recovery.valid()) {
if (parser.seen_test('S')) {
#if HAS_LCD_MENU
ui.goto_screen(menu_job_recovery);
#elif ENABLED(DWIN_CREALITY_LCD)
recovery.dwin_flag = true;
#elif ENABLED(EXTENSIBLE_UI)
ExtUI::onPowerLossResume();
#else
SERIAL_ECHO_MSG("Resume requires LCD.");
#endif
}
else if (parser.seen_test('C')) {
#if HAS_LCD_MENU
lcd_power_loss_recovery_cancel();
#else
recovery.cancel();
#endif
TERN_(EXTENSIBLE_UI, ExtUI::onPrintTimerStopped());
}
else
recovery.resume();
}
else
plr_error(recovery.info.valid_head ? PSTR("No") : PSTR("Invalid"));
}
#endif // POWER_LOSS_RECOVERY

View File

@@ -0,0 +1,62 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../../gcode.h"
#include "../../../feature/powerloss.h"
#include "../../../module/motion.h"
#include "../../../lcd/marlinui.h"
/**
* M413: Enable / Disable power-loss recovery
*
* Parameters
* S[bool] - Flag to enable / disable.
* If omitted, report current state.
*/
void GcodeSuite::M413() {
if (parser.seen('S'))
recovery.enable(parser.value_bool());
else {
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Power-loss recovery ");
serialprintln_onoff(recovery.enabled);
}
#if ENABLED(DEBUG_POWER_LOSS_RECOVERY)
if (parser.seen("RL")) recovery.load();
if (parser.seen_test('W')) recovery.save(true);
if (parser.seen_test('P')) recovery.purge();
if (parser.seen_test('D')) recovery.debug(PSTR("M413"));
#if PIN_EXISTS(POWER_LOSS)
if (parser.seen_test('O')) recovery._outage();
#endif
if (parser.seen_test('E')) SERIAL_ECHOPGM_P(recovery.exists() ? PSTR("PLR Exists\n") : PSTR("No PLR\n"));
if (parser.seen_test('V')) SERIAL_ECHOPGM_P(recovery.valid() ? PSTR("Valid\n") : PSTR("Invalid\n"));
#endif
}
#endif // POWER_LOSS_RECOVERY

View File

@@ -0,0 +1,49 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if HAS_PRUSA_MMU2
#include "../../gcode.h"
#include "../../../feature/mmu/mmu2.h"
/**
* M403: Set filament type for MMU2
*
* Valid filament type values:
*
* 0 Default
* 1 Flexible
* 2 PVA
*/
void GcodeSuite::M403() {
int8_t index = parser.intval('E', -1),
type = parser.intval('F', -1);
if (WITHIN(index, 0, EXTRUDERS - 1) && WITHIN(type, 0, 2))
mmu2.set_filament_type(index, type);
else
SERIAL_ECHO_MSG("M403 - bad arguments.");
}
#endif // HAS_PRUSA_MMU2

View File

@@ -0,0 +1,69 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_FILAMENT_SENSOR
#include "../../gcode.h"
#include "../../../feature/runout.h"
/**
* M412: Enable / Disable filament runout detection
*
* Parameters
* R : Reset the runout sensor
* S<bool> : Reset and enable/disable the runout sensor
* H<bool> : Enable/disable host handling of filament runout
* D<linear> : Extra distance to continue after runout is triggered
*/
void GcodeSuite::M412() {
if (parser.seen("RS"
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, "D")
TERN_(HOST_ACTION_COMMANDS, "H")
)) {
#if ENABLED(HOST_ACTION_COMMANDS)
if (parser.seen('H')) runout.host_handling = parser.value_bool();
#endif
const bool seenR = parser.seen_test('R'), seenS = parser.seen('S');
if (seenR || seenS) runout.reset();
if (seenS) runout.enabled = parser.value_bool();
#if HAS_FILAMENT_RUNOUT_DISTANCE
if (parser.seen('D')) runout.set_runout_distance(parser.value_linear_units());
#endif
}
else {
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Filament runout ");
serialprint_onoff(runout.enabled);
#if HAS_FILAMENT_RUNOUT_DISTANCE
SERIAL_ECHOPAIR(" ; Distance ", runout.runout_distance(), "mm");
#endif
#if ENABLED(HOST_ACTION_COMMANDS)
SERIAL_ECHOPGM(" ; Host handling ");
serialprint_onoff(runout.host_handling);
#endif
SERIAL_EOL();
}
}
#endif // HAS_FILAMENT_SENSOR

View File

@@ -0,0 +1,64 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_TRINAMIC_CONFIG
#include "../../gcode.h"
#include "../../../feature/tmc_util.h"
#include "../../../module/stepper/indirection.h"
/**
* M122: Debug TMC drivers
*/
void GcodeSuite::M122() {
xyze_bool_t print_axis = ARRAY_N_1(LOGICAL_AXES, false);
bool print_all = true;
LOOP_LOGICAL_AXES(i) if (parser.seen_test(axis_codes[i])) { print_axis[i] = true; print_all = false; }
if (print_all) LOOP_LOGICAL_AXES(i) print_axis[i] = true;
if (parser.boolval('I')) restore_stepper_drivers();
#if ENABLED(TMC_DEBUG)
#if ENABLED(MONITOR_DRIVER_STATUS)
const bool sflag = parser.seen_test('S'), sval = sflag && parser.value_bool();
if (sflag && !sval)
tmc_set_report_interval(0);
else if (parser.seenval('P'))
tmc_set_report_interval(_MAX(250, parser.value_ushort()));
else if (sval)
tmc_set_report_interval(MONITOR_DRIVER_STATUS_INTERVAL_MS);
#endif
if (parser.seen_test('V'))
tmc_get_registers(LOGICAL_AXIS_ELEM(print_axis));
else
tmc_report_all(LOGICAL_AXIS_ELEM(print_axis));
#endif
test_tmc_connection(LOGICAL_AXIS_ELEM(print_axis));
}
#endif // HAS_TRINAMIC_CONFIG

View File

@@ -0,0 +1,141 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_STEALTHCHOP
#include "../../gcode.h"
#include "../../../feature/tmc_util.h"
#include "../../../module/stepper/indirection.h"
template<typename TMC>
void tmc_say_stealth_status(TMC &st) {
st.printLabel();
SERIAL_ECHOPGM(" driver mode:\t");
SERIAL_ECHOLNPGM_P(st.get_stealthChop() ? PSTR("stealthChop") : PSTR("spreadCycle"));
}
template<typename TMC>
void tmc_set_stealthChop(TMC &st, const bool enable) {
st.stored.stealthChop_enabled = enable;
st.refresh_stepping_mode();
}
static void set_stealth_status(const bool enable, const int8_t target_e_stepper) {
#define TMC_SET_STEALTH(Q) tmc_set_stealthChop(stepper##Q, enable)
#if X_HAS_STEALTHCHOP || Y_HAS_STEALTHCHOP || Z_HAS_STEALTHCHOP \
|| I_HAS_STEALTHCHOP || J_HAS_STEALTHCHOP || K_HAS_STEALTHCHOP \
|| X2_HAS_STEALTHCHOP || Y2_HAS_STEALTHCHOP || Z2_HAS_STEALTHCHOP || Z3_HAS_STEALTHCHOP || Z4_HAS_STEALTHCHOP
const uint8_t index = parser.byteval('I');
#endif
LOOP_LOGICAL_AXES(i) if (parser.seen(axis_codes[i])) {
switch (i) {
case X_AXIS:
TERN_(X_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(X));
TERN_(X2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(X2));
break;
#if HAS_Y_AXIS
case Y_AXIS:
TERN_(Y_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(Y));
TERN_(Y2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(Y2));
break;
#endif
#if HAS_Z_AXIS
case Z_AXIS:
TERN_(Z_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(Z));
TERN_(Z2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(Z2));
TERN_(Z3_HAS_STEALTHCHOP, if (index == 2) TMC_SET_STEALTH(Z3));
TERN_(Z4_HAS_STEALTHCHOP, if (index == 3) TMC_SET_STEALTH(Z4));
break;
#endif
#if I_HAS_STEALTHCHOP
case I_AXIS: TMC_SET_STEALTH(I); break;
#endif
#if J_HAS_STEALTHCHOP
case J_AXIS: TMC_SET_STEALTH(J); break;
#endif
#if K_HAS_STEALTHCHOP
case K_AXIS: TMC_SET_STEALTH(K); break;
#endif
#if E_STEPPERS
case E_AXIS: {
if (target_e_stepper < 0) return;
switch (target_e_stepper) {
TERN_(E0_HAS_STEALTHCHOP, case 0: TMC_SET_STEALTH(E0); break;)
TERN_(E1_HAS_STEALTHCHOP, case 1: TMC_SET_STEALTH(E1); break;)
TERN_(E2_HAS_STEALTHCHOP, case 2: TMC_SET_STEALTH(E2); break;)
TERN_(E3_HAS_STEALTHCHOP, case 3: TMC_SET_STEALTH(E3); break;)
TERN_(E4_HAS_STEALTHCHOP, case 4: TMC_SET_STEALTH(E4); break;)
TERN_(E5_HAS_STEALTHCHOP, case 5: TMC_SET_STEALTH(E5); break;)
TERN_(E6_HAS_STEALTHCHOP, case 6: TMC_SET_STEALTH(E6); break;)
TERN_(E7_HAS_STEALTHCHOP, case 7: TMC_SET_STEALTH(E7); break;)
}
} break;
#endif
}
}
}
static void say_stealth_status() {
#define TMC_SAY_STEALTH_STATUS(Q) tmc_say_stealth_status(stepper##Q)
OPTCODE( X_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(X))
OPTCODE(X2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(X2))
OPTCODE( Y_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Y))
OPTCODE(Y2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Y2))
OPTCODE( Z_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z))
OPTCODE(Z2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z2))
OPTCODE(Z3_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z3))
OPTCODE(Z4_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z4))
OPTCODE( I_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(I))
OPTCODE( J_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(J))
OPTCODE( K_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(K))
OPTCODE(E0_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E0))
OPTCODE(E1_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E1))
OPTCODE(E2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E2))
OPTCODE(E3_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E3))
OPTCODE(E4_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E4))
OPTCODE(E5_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E5))
OPTCODE(E6_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E6))
OPTCODE(E7_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E7))
}
/**
* M569: Enable stealthChop on an axis
*
* S[1|0] to enable or disable
* XYZE to target an axis
* No arguments reports the stealthChop status of all capable drivers.
*/
void GcodeSuite::M569() {
if (parser.seen('S'))
set_stealth_status(parser.value_bool(), get_target_e_stepper_from_command());
else
say_stealth_status();
}
#endif // HAS_STEALTHCHOP

View File

@@ -0,0 +1,201 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_TRINAMIC_CONFIG
#include "../../gcode.h"
#include "../../../feature/tmc_util.h"
#include "../../../module/stepper/indirection.h"
/**
* M906: Set motor current in milliamps.
*
* Parameters:
* X[current] - Set mA current for X driver(s)
* Y[current] - Set mA current for Y driver(s)
* Z[current] - Set mA current for Z driver(s)
* E[current] - Set mA current for E driver(s)
*
* I[index] - Axis sub-index (Omit or 0 for X, Y, Z; 1 for X2, Y2, Z2; 2 for Z3; 3 for Z4.)
* T[index] - Extruder index (Zero-based. Omit for E0 only.)
*
* With no parameters report driver currents.
*/
void GcodeSuite::M906() {
#define TMC_SAY_CURRENT(Q) tmc_print_current(stepper##Q)
#define TMC_SET_CURRENT(Q) stepper##Q.rms_current(value)
bool report = true;
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4) || AXIS_IS_TMC(I) || AXIS_IS_TMC(J) || AXIS_IS_TMC(K)
const uint8_t index = parser.byteval('I');
#endif
LOOP_LOGICAL_AXES(i) if (uint16_t value = parser.intval(axis_codes[i])) {
report = false;
switch (i) {
case X_AXIS:
#if AXIS_IS_TMC(X)
if (index == 0) TMC_SET_CURRENT(X);
#endif
#if AXIS_IS_TMC(X2)
if (index == 1) TMC_SET_CURRENT(X2);
#endif
break;
#if HAS_Y_AXIS
case Y_AXIS:
#if AXIS_IS_TMC(Y)
if (index == 0) TMC_SET_CURRENT(Y);
#endif
#if AXIS_IS_TMC(Y2)
if (index == 1) TMC_SET_CURRENT(Y2);
#endif
break;
#endif
#if HAS_Z_AXIS
case Z_AXIS:
#if AXIS_IS_TMC(Z)
if (index == 0) TMC_SET_CURRENT(Z);
#endif
#if AXIS_IS_TMC(Z2)
if (index == 1) TMC_SET_CURRENT(Z2);
#endif
#if AXIS_IS_TMC(Z3)
if (index == 2) TMC_SET_CURRENT(Z3);
#endif
#if AXIS_IS_TMC(Z4)
if (index == 3) TMC_SET_CURRENT(Z4);
#endif
break;
#endif
#if AXIS_IS_TMC(I)
case I_AXIS: TMC_SET_CURRENT(I); break;
#endif
#if AXIS_IS_TMC(J)
case J_AXIS: TMC_SET_CURRENT(J); break;
#endif
#if AXIS_IS_TMC(K)
case K_AXIS: TMC_SET_CURRENT(K); break;
#endif
#if E_STEPPERS
case E_AXIS: {
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
switch (target_e_stepper) {
#if AXIS_IS_TMC(E0)
case 0: TMC_SET_CURRENT(E0); break;
#endif
#if AXIS_IS_TMC(E1)
case 1: TMC_SET_CURRENT(E1); break;
#endif
#if AXIS_IS_TMC(E2)
case 2: TMC_SET_CURRENT(E2); break;
#endif
#if AXIS_IS_TMC(E3)
case 3: TMC_SET_CURRENT(E3); break;
#endif
#if AXIS_IS_TMC(E4)
case 4: TMC_SET_CURRENT(E4); break;
#endif
#if AXIS_IS_TMC(E5)
case 5: TMC_SET_CURRENT(E5); break;
#endif
#if AXIS_IS_TMC(E6)
case 6: TMC_SET_CURRENT(E6); break;
#endif
#if AXIS_IS_TMC(E7)
case 7: TMC_SET_CURRENT(E7); break;
#endif
}
} break;
#endif
}
}
if (report) {
#if AXIS_IS_TMC(X)
TMC_SAY_CURRENT(X);
#endif
#if AXIS_IS_TMC(X2)
TMC_SAY_CURRENT(X2);
#endif
#if AXIS_IS_TMC(Y)
TMC_SAY_CURRENT(Y);
#endif
#if AXIS_IS_TMC(Y2)
TMC_SAY_CURRENT(Y2);
#endif
#if AXIS_IS_TMC(Z)
TMC_SAY_CURRENT(Z);
#endif
#if AXIS_IS_TMC(Z2)
TMC_SAY_CURRENT(Z2);
#endif
#if AXIS_IS_TMC(Z3)
TMC_SAY_CURRENT(Z3);
#endif
#if AXIS_IS_TMC(Z4)
TMC_SAY_CURRENT(Z4);
#endif
#if AXIS_IS_TMC(I)
TMC_SAY_CURRENT(I);
#endif
#if AXIS_IS_TMC(J)
TMC_SAY_CURRENT(J);
#endif
#if AXIS_IS_TMC(K)
TMC_SAY_CURRENT(K);
#endif
#if AXIS_IS_TMC(E0)
TMC_SAY_CURRENT(E0);
#endif
#if AXIS_IS_TMC(E1)
TMC_SAY_CURRENT(E1);
#endif
#if AXIS_IS_TMC(E2)
TMC_SAY_CURRENT(E2);
#endif
#if AXIS_IS_TMC(E3)
TMC_SAY_CURRENT(E3);
#endif
#if AXIS_IS_TMC(E4)
TMC_SAY_CURRENT(E4);
#endif
#if AXIS_IS_TMC(E5)
TMC_SAY_CURRENT(E5);
#endif
#if AXIS_IS_TMC(E6)
TMC_SAY_CURRENT(E6);
#endif
#if AXIS_IS_TMC(E7)
TMC_SAY_CURRENT(E7);
#endif
}
}
#endif // HAS_TRINAMIC_CONFIG

View File

@@ -0,0 +1,417 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_TRINAMIC_CONFIG
#include "../../gcode.h"
#include "../../../feature/tmc_util.h"
#include "../../../module/stepper/indirection.h"
#include "../../../module/planner.h"
#include "../../queue.h"
#if ENABLED(MONITOR_DRIVER_STATUS)
#define M91x_USE(ST) (AXIS_DRIVER_TYPE(ST, TMC2130) || AXIS_DRIVER_TYPE(ST, TMC2160) || AXIS_DRIVER_TYPE(ST, TMC2208) || AXIS_DRIVER_TYPE(ST, TMC2209) || AXIS_DRIVER_TYPE(ST, TMC2660) || AXIS_DRIVER_TYPE(ST, TMC5130) || AXIS_DRIVER_TYPE(ST, TMC5160))
#define M91x_USE_E(N) (E_STEPPERS > N && M91x_USE(E##N))
#if M91x_USE(X) || M91x_USE(X2)
#define M91x_SOME_X 1
#endif
#if LINEAR_AXES >= 2 && (M91x_USE(Y) || M91x_USE(Y2))
#define M91x_SOME_Y 1
#endif
#if HAS_Z_AXIS && (M91x_USE(Z) || M91x_USE(Z2) || M91x_USE(Z3) || M91x_USE(Z4))
#define M91x_SOME_Z 1
#endif
#if LINEAR_AXES >= 4 && M91x_USE(I)
#define M91x_USE_I 1
#endif
#if LINEAR_AXES >= 5 && M91x_USE(J)
#define M91x_USE_J 1
#endif
#if LINEAR_AXES >= 6 && M91x_USE(K)
#define M91x_USE_K 1
#endif
#if M91x_USE_E(0) || M91x_USE_E(1) || M91x_USE_E(2) || M91x_USE_E(3) || M91x_USE_E(4) || M91x_USE_E(5) || M91x_USE_E(6) || M91x_USE_E(7)
#define M91x_SOME_E 1
#endif
#if !M91x_SOME_X && !M91x_SOME_Y && !M91x_SOME_Z && !M91x_USE_I && !M91x_USE_J && !M91x_USE_K && !M91x_SOME_E
#error "MONITOR_DRIVER_STATUS requires at least one TMC2130, 2160, 2208, 2209, 2660, 5130, or 5160."
#endif
/**
* M911: Report TMC stepper driver overtemperature pre-warn flag
* This flag is held by the library, persisting until cleared by M912
*/
void GcodeSuite::M911() {
#if M91x_USE(X)
tmc_report_otpw(stepperX);
#endif
#if M91x_USE(X2)
tmc_report_otpw(stepperX2);
#endif
#if M91x_USE(Y)
tmc_report_otpw(stepperY);
#endif
#if M91x_USE(Y2)
tmc_report_otpw(stepperY2);
#endif
#if M91x_USE(Z)
tmc_report_otpw(stepperZ);
#endif
#if M91x_USE(Z2)
tmc_report_otpw(stepperZ2);
#endif
#if M91x_USE(Z3)
tmc_report_otpw(stepperZ3);
#endif
#if M91x_USE(Z4)
tmc_report_otpw(stepperZ4);
#endif
TERN_(M91x_USE_I, tmc_report_otpw(stepperI));
TERN_(M91x_USE_J, tmc_report_otpw(stepperJ));
TERN_(M91x_USE_K, tmc_report_otpw(stepperK));
#if M91x_USE_E(0)
tmc_report_otpw(stepperE0);
#endif
#if M91x_USE_E(1)
tmc_report_otpw(stepperE1);
#endif
#if M91x_USE_E(2)
tmc_report_otpw(stepperE2);
#endif
#if M91x_USE_E(3)
tmc_report_otpw(stepperE3);
#endif
#if M91x_USE_E(4)
tmc_report_otpw(stepperE4);
#endif
#if M91x_USE_E(5)
tmc_report_otpw(stepperE5);
#endif
#if M91x_USE_E(6)
tmc_report_otpw(stepperE6);
#endif
#if M91x_USE_E(7)
tmc_report_otpw(stepperE7);
#endif
}
/**
* M912: Clear TMC stepper driver overtemperature pre-warn flag held by the library
* Specify one or more axes with X, Y, Z, X1, Y1, Z1, X2, Y2, Z2, Z3, Z4 and E[index].
* If no axes are given, clear all.
*
* Examples:
* M912 X ; clear X and X2
* M912 X1 ; clear X1 only
* M912 X2 ; clear X2 only
* M912 X E ; clear X, X2, and all E
* M912 E1 ; clear E1 only
*/
void GcodeSuite::M912() {
const bool hasX = TERN0(M91x_SOME_X, parser.seen(axis_codes.x)),
hasY = TERN0(M91x_SOME_Y, parser.seen(axis_codes.y)),
hasZ = TERN0(M91x_SOME_Z, parser.seen(axis_codes.z)),
hasI = TERN0(M91x_USE_I, parser.seen(axis_codes.i)),
hasJ = TERN0(M91x_USE_J, parser.seen(axis_codes.j)),
hasK = TERN0(M91x_USE_K, parser.seen(axis_codes.k)),
hasE = TERN0(M91x_SOME_E, parser.seen(axis_codes.e));
const bool hasNone = !hasE && !hasX && !hasY && !hasZ && !hasI && !hasJ && !hasK;
#if M91x_SOME_X
const int8_t xval = int8_t(parser.byteval(axis_codes.x, 0xFF));
#if M91x_USE(X)
if (hasNone || xval == 1 || (hasX && xval < 0)) tmc_clear_otpw(stepperX);
#endif
#if M91x_USE(X2)
if (hasNone || xval == 2 || (hasX && xval < 0)) tmc_clear_otpw(stepperX2);
#endif
#endif
#if M91x_SOME_Y
const int8_t yval = int8_t(parser.byteval(axis_codes.y, 0xFF));
#if M91x_USE(Y)
if (hasNone || yval == 1 || (hasY && yval < 0)) tmc_clear_otpw(stepperY);
#endif
#if M91x_USE(Y2)
if (hasNone || yval == 2 || (hasY && yval < 0)) tmc_clear_otpw(stepperY2);
#endif
#endif
#if M91x_SOME_Z
const int8_t zval = int8_t(parser.byteval(axis_codes.z, 0xFF));
#if M91x_USE(Z)
if (hasNone || zval == 1 || (hasZ && zval < 0)) tmc_clear_otpw(stepperZ);
#endif
#if M91x_USE(Z2)
if (hasNone || zval == 2 || (hasZ && zval < 0)) tmc_clear_otpw(stepperZ2);
#endif
#if M91x_USE(Z3)
if (hasNone || zval == 3 || (hasZ && zval < 0)) tmc_clear_otpw(stepperZ3);
#endif
#if M91x_USE(Z4)
if (hasNone || zval == 4 || (hasZ && zval < 0)) tmc_clear_otpw(stepperZ4);
#endif
#endif
#if M91x_USE_I
const int8_t ival = int8_t(parser.byteval(axis_codes.i, 0xFF));
if (hasNone || ival == 1 || (hasI && ival < 0)) tmc_clear_otpw(stepperI);
#endif
#if M91x_USE_J
const int8_t jval = int8_t(parser.byteval(axis_codes.j, 0xFF));
if (hasNone || jval == 1 || (hasJ && jval < 0)) tmc_clear_otpw(stepperJ);
#endif
#if M91x_USE_K
const int8_t kval = int8_t(parser.byteval(axis_codes.k, 0xFF));
if (hasNone || kval == 1 || (hasK && kval < 0)) tmc_clear_otpw(stepperK);
#endif
#if M91x_SOME_E
const int8_t eval = int8_t(parser.byteval(axis_codes.e, 0xFF));
#if M91x_USE_E(0)
if (hasNone || eval == 0 || (hasE && eval < 0)) tmc_clear_otpw(stepperE0);
#endif
#if M91x_USE_E(1)
if (hasNone || eval == 1 || (hasE && eval < 0)) tmc_clear_otpw(stepperE1);
#endif
#if M91x_USE_E(2)
if (hasNone || eval == 2 || (hasE && eval < 0)) tmc_clear_otpw(stepperE2);
#endif
#if M91x_USE_E(3)
if (hasNone || eval == 3 || (hasE && eval < 0)) tmc_clear_otpw(stepperE3);
#endif
#if M91x_USE_E(4)
if (hasNone || eval == 4 || (hasE && eval < 0)) tmc_clear_otpw(stepperE4);
#endif
#if M91x_USE_E(5)
if (hasNone || eval == 5 || (hasE && eval < 0)) tmc_clear_otpw(stepperE5);
#endif
#if M91x_USE_E(6)
if (hasNone || eval == 6 || (hasE && eval < 0)) tmc_clear_otpw(stepperE6);
#endif
#if M91x_USE_E(7)
if (hasNone || eval == 7 || (hasE && eval < 0)) tmc_clear_otpw(stepperE7);
#endif
#endif
}
#endif // MONITOR_DRIVER_STATUS
/**
* M913: Set HYBRID_THRESHOLD speed.
*/
#if ENABLED(HYBRID_THRESHOLD)
void GcodeSuite::M913() {
#define TMC_SAY_PWMTHRS(A,Q) tmc_print_pwmthrs(stepper##Q)
#define TMC_SET_PWMTHRS(A,Q) stepper##Q.set_pwm_thrs(value)
#define TMC_SAY_PWMTHRS_E(E) tmc_print_pwmthrs(stepperE##E)
#define TMC_SET_PWMTHRS_E(E) stepperE##E.set_pwm_thrs(value)
bool report = true;
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4) || AXIS_IS_TMC(I) || AXIS_IS_TMC(J) || AXIS_IS_TMC(K)
const uint8_t index = parser.byteval('I');
#endif
LOOP_LOGICAL_AXES(i) if (int32_t value = parser.longval(axis_codes[i])) {
report = false;
switch (i) {
case X_AXIS:
TERN_(X_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(X,X));
TERN_(X2_HAS_STEALTHCHOP, if (!(index & 1)) TMC_SET_PWMTHRS(X,X2));
break;
case Y_AXIS:
TERN_(Y_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(Y,Y));
TERN_(Y2_HAS_STEALTHCHOP, if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2));
break;
#if I_HAS_STEALTHCHOP
case I_AXIS: TMC_SET_PWMTHRS(I,I); break;
#endif
#if J_HAS_STEALTHCHOP
case J_AXIS: TMC_SET_PWMTHRS(J,J); break;
#endif
#if K_HAS_STEALTHCHOP
case K_AXIS: TMC_SET_PWMTHRS(K,K); break;
#endif
case Z_AXIS:
TERN_(Z_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(Z,Z));
TERN_(Z2_HAS_STEALTHCHOP, if (index == 0 || index == 2) TMC_SET_PWMTHRS(Z,Z2));
TERN_(Z3_HAS_STEALTHCHOP, if (index == 0 || index == 3) TMC_SET_PWMTHRS(Z,Z3));
TERN_(Z4_HAS_STEALTHCHOP, if (index == 0 || index == 4) TMC_SET_PWMTHRS(Z,Z4));
break;
#if E_STEPPERS
case E_AXIS: {
const int8_t target_e_stepper = get_target_e_stepper_from_command();
if (target_e_stepper < 0) return;
switch (target_e_stepper) {
TERN_(E0_HAS_STEALTHCHOP, case 0: TMC_SET_PWMTHRS_E(0); break;)
TERN_(E1_HAS_STEALTHCHOP, case 1: TMC_SET_PWMTHRS_E(1); break;)
TERN_(E2_HAS_STEALTHCHOP, case 2: TMC_SET_PWMTHRS_E(2); break;)
TERN_(E3_HAS_STEALTHCHOP, case 3: TMC_SET_PWMTHRS_E(3); break;)
TERN_(E4_HAS_STEALTHCHOP, case 4: TMC_SET_PWMTHRS_E(4); break;)
TERN_(E5_HAS_STEALTHCHOP, case 5: TMC_SET_PWMTHRS_E(5); break;)
TERN_(E6_HAS_STEALTHCHOP, case 6: TMC_SET_PWMTHRS_E(6); break;)
TERN_(E7_HAS_STEALTHCHOP, case 7: TMC_SET_PWMTHRS_E(7); break;)
}
} break;
#endif // E_STEPPERS
}
}
if (report) {
TERN_( X_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(X,X));
TERN_(X2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(X,X2));
TERN_( Y_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Y,Y));
TERN_(Y2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Y,Y2));
TERN_( Z_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z));
TERN_(Z2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z2));
TERN_(Z3_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z3));
TERN_(Z4_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z4));
TERN_( I_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(I,I));
TERN_( J_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(J,J));
TERN_( K_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(K,K));
TERN_(E0_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(0));
TERN_(E1_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(1));
TERN_(E2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(2));
TERN_(E3_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(3));
TERN_(E4_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(4));
TERN_(E5_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(5));
TERN_(E6_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(6));
TERN_(E7_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(7));
}
}
#endif // HYBRID_THRESHOLD
/**
* M914: Set StallGuard sensitivity.
*/
#if USE_SENSORLESS
void GcodeSuite::M914() {
bool report = true;
const uint8_t index = parser.byteval('I');
LOOP_LINEAR_AXES(i) if (parser.seen(AXIS_CHAR(i))) {
const int16_t value = parser.value_int();
report = false;
switch (i) {
#if X_SENSORLESS
case X_AXIS:
#if AXIS_HAS_STALLGUARD(X)
if (index < 2) stepperX.homing_threshold(value);
#endif
#if AXIS_HAS_STALLGUARD(X2)
if (!(index & 1)) stepperX2.homing_threshold(value);
#endif
break;
#endif
#if Y_SENSORLESS
case Y_AXIS:
#if AXIS_HAS_STALLGUARD(Y)
if (index < 2) stepperY.homing_threshold(value);
#endif
#if AXIS_HAS_STALLGUARD(Y2)
if (!(index & 1)) stepperY2.homing_threshold(value);
#endif
break;
#endif
#if Z_SENSORLESS
case Z_AXIS:
#if AXIS_HAS_STALLGUARD(Z)
if (index < 2) stepperZ.homing_threshold(value);
#endif
#if AXIS_HAS_STALLGUARD(Z2)
if (index == 0 || index == 2) stepperZ2.homing_threshold(value);
#endif
#if AXIS_HAS_STALLGUARD(Z3)
if (index == 0 || index == 3) stepperZ3.homing_threshold(value);
#endif
#if AXIS_HAS_STALLGUARD(Z4)
if (index == 0 || index == 4) stepperZ4.homing_threshold(value);
#endif
break;
#endif
#if I_SENSORLESS && AXIS_HAS_STALLGUARD(I)
case I_AXIS: stepperI.homing_threshold(value); break;
#endif
#if J_SENSORLESS && AXIS_HAS_STALLGUARD(J)
case J_AXIS: stepperJ.homing_threshold(value); break;
#endif
#if K_SENSORLESS && AXIS_HAS_STALLGUARD(K)
case K_AXIS: stepperK.homing_threshold(value); break;
#endif
}
}
if (report) {
#if X_SENSORLESS
#if AXIS_HAS_STALLGUARD(X)
tmc_print_sgt(stepperX);
#endif
#if AXIS_HAS_STALLGUARD(X2)
tmc_print_sgt(stepperX2);
#endif
#endif
#if Y_SENSORLESS
#if AXIS_HAS_STALLGUARD(Y)
tmc_print_sgt(stepperY);
#endif
#if AXIS_HAS_STALLGUARD(Y2)
tmc_print_sgt(stepperY2);
#endif
#endif
#if Z_SENSORLESS
#if AXIS_HAS_STALLGUARD(Z)
tmc_print_sgt(stepperZ);
#endif
#if AXIS_HAS_STALLGUARD(Z2)
tmc_print_sgt(stepperZ2);
#endif
#if AXIS_HAS_STALLGUARD(Z3)
tmc_print_sgt(stepperZ3);
#endif
#if AXIS_HAS_STALLGUARD(Z4)
tmc_print_sgt(stepperZ4);
#endif
#endif
#if I_SENSORLESS && AXIS_HAS_STALLGUARD(I)
tmc_print_sgt(stepperI);
#endif
#if J_SENSORLESS && AXIS_HAS_STALLGUARD(J)
tmc_print_sgt(stepperJ);
#endif
#if K_SENSORLESS && AXIS_HAS_STALLGUARD(K)
tmc_print_sgt(stepperK);
#endif
}
}
#endif // USE_SENSORLESS
#endif // HAS_TRINAMIC_CONFIG

1145
Marlin/src/gcode/gcode.cpp Normal file

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More